scholarly journals 12(S)-hydroxyeicosatetraenoic acid and 13(S)-hydroxyoctadecadienoic acid regulation of protein kinase C-alpha in melanoma cells: role of receptor-mediated hydrolysis of inositol phospholipids.

1995 ◽  
Vol 92 (20) ◽  
pp. 9323-9327 ◽  
Author(s):  
B. Liu ◽  
W. A. Khan ◽  
Y. A. Hannun ◽  
J. Timar ◽  
J. D. Taylor ◽  
...  
1996 ◽  
Vol 44 (2) ◽  
pp. 177-182 ◽  
Author(s):  
J Timar ◽  
B Liu ◽  
R Bazaz ◽  
K V Honn

In B16a melanoma cells, protein kinase-C-alpha (PKC alpha) is immunomorphologically associated with cytoplasmic vesicles in addition to the previously observed locations (plasma membrane, cytoskeleton, nucleus), as detected with monoclonal antibody (MAb) MC3a. Subcellular fractionation indicated that the authentic 80-KD protein as well as PKC activity can be detected in several particulate fractions except for L2, which contains dense lysosomes. The highest PKC activity is associated with the cytosol-ultralight vesicles and the L1 fraction (containing plasma membrane, endosomes, and the Golgi apparatus). Both of these fractions contained the fluid-phase endocytosis marker peroxidase, indicating that PKC alpha, in addition to other subcellular structures, is most probably associated with endosomal membranes in B16a melanoma cells.


2004 ◽  
Vol 199 (3) ◽  
pp. 381-387 ◽  
Author(s):  
Konstantin Krasagakis ◽  
Carsten Lindschau ◽  
Sabine Fimmel ◽  
J�rgen Eberle ◽  
Petra Quass ◽  
...  

2021 ◽  
Author(s):  
Gema Lorden Losada ◽  
Alexandra C Newton

Protein Kinase C (PKC) isozymes are tightly regulated kinases that transduce a myriad of signals from receptor-mediated hydrolysis of membrane phospholipids. They play an important role in brain physiology, and dysregulation of PKC activity is associated with neurodegeneration. Gain-of-function mutations in PKCα are associated with Alzheimer’s disease and mutations in PKCγ cause spinocerebellar ataxia type 14. This article presents an overview of the role of the conventional PKCα and PKCγ in neurodegeneration and proposes repurposing PKC inhibitors, which failed in clinical trials for cancer, for the treatment of neurodegenerative diseases.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Julia A. Callender ◽  
Alexandra C. Newton

Protein kinase C (PKC) is a family of enzymes whose members transduce a large variety of cellular signals instigated by the receptor-mediated hydrolysis of membrane phospholipids. While PKC has been widely implicated in the pathology of diseases affecting all areas of physiology including cancer, diabetes, and heart disease—it was discovered, and initially characterized, in the brain. PKC plays a key role in controlling the balance between cell survival and cell death. Its loss of function is generally associated with cancer, whereas its enhanced activity is associated with neurodegeneration. This review presents an overview of signaling by diacylglycerol (DG)-dependent PKC isozymes in the brain, and focuses on the role of the Ca2+-sensitive conventional PKC isozymes in neurodegeneration.


2004 ◽  
Vol 14 (2) ◽  
pp. 85-89 ◽  
Author(s):  
Michael M. Lahn ◽  
Karen L. Sundell

Blood ◽  
1988 ◽  
Vol 72 (2) ◽  
pp. 491-499 ◽  
Author(s):  
DM Shasby ◽  
M Yorek ◽  
SS Shasby

Oxidants released from inflammatory cells contribute to the pathogenesis of acute inflammatory edema in many models. Chemically produced oxidants can reversibly alter the barrier properties of cultured endothelial and epithelial monolayers. This report examines the effects of nonlytic doses of H2O2 on endothelial cell lipids. H2O2 oxidized omega-6 fatty acids in the endothelial cells and initiated hydrolysis of endothelial cell phospholipids. When endothelial cells were exposed to peroxidized linoleic acid, it caused lysis of the cells at doses 1,000-fold lower than effective doses of H2O2. The phospholipid hydrolysis was directed primarily at the inositol phospholipids and consisted of both A and C type phospholipase activity. The phospholipase A hydrolysis resulted in increases in endothelial cell free fatty acids and lysophosphatidylinositol. The phospholipase C hydrolysis resulted in increases in diglycerides, phosphatidic acid, and inositol polyphosphate levels. The phospholipase C hydrolysis of phosphatidylinositol is known to activate protein kinase C in most cells. Stimulation of protein kinase C with phorbol- 12,13-dibutyrate increased albumin flux across endothelial monolayers and altered endothelial cell shape, similar to effects of oxidants. These data are consistent with the hypothesis that oxidant-initiated hydrolysis of endothelial cell inositol phospholipids contributes to oxidant-mediated reversible changes in endothelial monolayer barrier function.


Sign in / Sign up

Export Citation Format

Share Document