scholarly journals In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis

1997 ◽  
Vol 94 (1) ◽  
pp. 322-327 ◽  
Author(s):  
H. Song ◽  
M. Golovkin ◽  
A. S. N. Reddy ◽  
S. A. Endow
2021 ◽  
Vol 22 (7) ◽  
pp. 3466
Author(s):  
Svetlana V. Klinova ◽  
Boris A. Katsnelson ◽  
Ilzira A. Minigalieva ◽  
Oksana P. Gerzen ◽  
Alexander A. Balakin ◽  
...  

Subchronic intoxication was induced in outbred male rats by repeated intraperitoneal injections with lead oxide (PbO) and/or cadmium oxide (CdO) nanoparticles (NPs) 3 times a week during 6 weeks for the purpose of examining its effects on the contractile characteristics of isolated right ventricle trabeculae and papillary muscles in isometric and afterload contractions. Isolated and combined intoxication with these NPs was observed to reduce the mechanical work produced by both types of myocardial preparation. Using the in vitro motility assay, we showed that the sliding velocity of regulated thin filaments drops under both isolated and combined intoxication with CdO–NP and PbO–NP. These results correlate with a shift in the expression of myosin heavy chain (MHC) isoforms towards slowly cycling β–MHC. The type of CdO–NP + PbO–NP combined cardiotoxicity depends on the effect of the toxic impact, the extent of this effect, the ratio of toxicant doses, and the degree of stretching of cardiomyocytes and muscle type studied. Some indices of combined Pb–NP and CdO–NP cardiotoxicity and general toxicity (genotoxicity included) became fully or partly normalized if intoxication developed against background administration of a bioprotective complex.


2001 ◽  
Vol 355 (3) ◽  
pp. 663-670 ◽  
Author(s):  
Claudia TROST ◽  
Christiane BERGS ◽  
Nina HIMMERKUS ◽  
Veit FLOCKERZI

The mammalian gene products, transient receptor potential (trp)1 to trp7, are related to the Drosophila TRP and TRP-like ion channels, and are candidate proteins underlying agonist-activated Ca2+-permeable ion channels. Recently, the TRP4 protein has been shown to be part of native store-operated Ca2+-permeable channels. These channels, most likely, are composed of other proteins in addition to TRP4. In the present paper we report the direct interaction of TRP4 and calmodulin (CaM) by: (1) retention of in vitro translated TRP4 and of TRP4 protein solubilized from bovine adrenal cortex by CaM–Sepharose in the presence of Ca2+, and (2) TRP4–glutathione S-transferase pull-down experiments. Two domains of TRP4, amino acid residues 688–759 and 786–848, were identified as being able to interact with CaM. The binding of CaM to both domains occurred only in the presence of Ca2+ concentrations above 10µM, with half maximal binding occurring at 16.6µM (domain 1) and 27.9µM Ca2+ (domain 2). Synthetic peptides, encompassing the two putative CaM binding sites within these domains and covering amino acid residues 694–728 and 829–853, interacted directly with dansyl–CaM with apparent Kd values of 94–189nM. These results indicate that TRP4/Ca2+-CaM are parts of a signalling complex involved in agonist-induced Ca2+ entry.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Fang Wang ◽  
Nicolas M. Brunet ◽  
Justin R. Grubich ◽  
Ewa A. Bienkiewicz ◽  
Thomas M. Asbury ◽  
...  

Familial hypertrophic cardiomyopathy (FHC) is a disease of cardiac sarcomeres. To identify molecular mechanisms underlying FHC pathology, functional and structural differences in three FHC-related mutations in recombinantα-Tm (V95A, D175N, and E180G) were characterized using both conventional and modified in vitro motility assays and circular dichroism spectroscopy. Mutant Tm's exhibited reducedα-helical structure and increased unordered structure. When thin filaments were fully occupied by regulatory proteins, little or no motion was detected at pCa 9, and maximum speed (pCa 5) was similar for all tropomyosins. Ca2+-responsiveness of filament sliding speed was increased either by increasedpCa50(V95A), reduced cooperativityn(D175N), or both (E180G). When temperature was increased, thin filaments with E180G exhibited dysregulation at temperatures ~10°C lower, and much closer to body temperature, than WT. When HMM density was reduced, thin filaments with D175N required fewer motors to initiate sliding or achieve maximum sliding speed.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Saiti S Halder ◽  
Lorenzo R Sewanan ◽  
Michael J Rynkiewicz ◽  
Jeffrey R Moore ◽  
William J Lehman ◽  
...  

Missense mutations in alpha-tropomyosin (TPM1) can lead to development of hypertrophic (HCM) or dilated cardiomyopathy (DCM). HCM mutation E62Q and DCM mutation E54K have previously been studied extensively in experimental systems ranging from in vitro biochemical assays to animal models, although some conflicting results have been found. We undertook a detailed multi-scale assessment of these mutants that included atomistic simulations, regulated in vitro motility (IVM) assays, and finally physiologically relevant human engineered heart tissues. In IVM assays, E62Q previously has shown increased Calcium sensitivity. New molecular dynamics data shows mutation-induced changes to tropomyosin dynamics and interactions with actin and troponin. Human engineered heart tissues (EHT) were generated by seeding iPSC-derived cardiomyocytes engineered using CRISPR/CAS9 to express either E62Q or E54K cardiomyopathy mutations. After two weeks in culture, E62Q EHTs showed a drastically hypercontractile twitch force and significantly increased stiffness while displaying little difference in twitch kinetics compared to wild-type isogenic control EHTs. On the other hand, E54K EHTs displayed hypocontractile isometric twitch force with faster kinetics, impaired length-dependent activation and lowered stiffness. Given these contractile abnormalities, we hypothesized that small molecule myosin modulators to appropriately activate or inhibit myosin activity would restore E54K or E62Q EHTs to normal behavior. Accordingly, E62Q EHTs were treated with 0.5μM mavacamten (to remedy hypercontractility) and E54K EHTs with 0.5 μM danicamtiv (to remedy hypocontractility) for 4 days, followed by a 1 day washout period. Upon contractility testing, it was observed that the drugs were able to reverse contractile phenotypes observed in mutant EHTs and restore contractile properties to levels resembling those of the untreated wild type group. The computational, IVM and EHT studies provide clear evidence in support of the hyper- vs. hypo-contractility paradigm as a common axis that distinguishes HCM and DCM TPM1 mutations. Myosin modulators that directly compensate for underlying myofilament aberrations show promising efficacy in human in vitro systems.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Show-Li Chen

Previously, we demonstrate a gene, nuclear receptor interaction protein (NRIP, also named DCAF6 or IQWD1) as a Ca2+- dependent calmodulin binding protein that can activate calcineurin phosphatase activity. Here, we found that α-actinin-2 (ACTN2), is one of NRIP-interacting proteins from the yeast two-hybrid system using NRIP as a prey. We further confirmed the direct bound between NRIP and ACTN2 using in vitro protein-protein interaction and in vivo co-immunoprecipitation assays. To further map the binding domain of each protein, the results showed the IQ domain of NRIP responsible for ACTN2 binding, and EF hand motif of ACTN2 responsible for NRIP bound. Due to ACTN2 is a biomarker of muscular Z-disc complex; we found the co-localization of NRIP and ACTN2 in cardiac tissues by immunofluorescence assays. Taken together, NRIP is a novel ACTN2-interacting protein. To investigate insights into in vivo function of NRIP, we generated conventional NRIP-null mice. The H&E staining results are shown in the hearts of NRIP KO mice are enlarged and dilated and the cell width of NRIP KO cardiomyocyte is increased. The EM of NRIP KO heart muscles reveal the reduction of I-band width and extension length of Z-disc in sarcomere structure; and the echocardiography shows the diminished fractional shortening in heart functions. Additionally, the calcium transient and sarcomere contraction length in cardiomyocytes of NRIP KO is weaker and shorter than wt; respectively. In conclusion, NRIP is a novel Z-disc protein and has function for maintenance of sarcomere integrity structure and function for calcium transient and muscle contraction.


1995 ◽  
Vol 23 (3) ◽  
pp. 401S-401S ◽  
Author(s):  
Daren S. Jeffreys ◽  
Robert J. Eaton ◽  
Clive R. Bagshaw

2018 ◽  
Vol 19 (9) ◽  
pp. 2753 ◽  
Author(s):  
Nina Zippel ◽  
Annemarieke Loot ◽  
Heike Stingl ◽  
Voahanginirina Randriamboavonjy ◽  
Ingrid Fleming ◽  
...  

AMP-activated protein kinase (AMPK) is frequently reported to phosphorylate Ser1177 of the endothelial nitric-oxide synthase (eNOS), and therefore, is linked with a relaxing effect. However, previous studies failed to consistently demonstrate a major role for AMPK on eNOS-dependent relaxation. As AMPK also phosphorylates eNOS on the inhibitory Thr495 site, this study aimed to determine the role of AMPKα1 and α2 subunits in the regulation of NO-mediated vascular relaxation. Vascular reactivity to phenylephrine and acetylcholine was assessed in aortic and carotid artery segments from mice with global (AMPKα−/−) or endothelial-specific deletion (AMPKαΔEC) of the AMPKα subunits. In control and AMPKα1-depleted human umbilical vein endothelial cells, eNOS phosphorylation on Ser1177 and Thr495 was assessed after AMPK activation with thiopental or ionomycin. Global deletion of the AMPKα1 or α2 subunit in mice did not affect vascular reactivity. The endothelial-specific deletion of the AMPKα1 subunit attenuated phenylephrine-mediated contraction in an eNOS- and endothelium-dependent manner. In in vitro studies, activation of AMPK did not alter the phosphorylation of eNOS on Ser1177, but increased its phosphorylation on Thr495. Depletion of AMPKα1 in cultured human endothelial cells decreased Thr495 phosphorylation without affecting Ser1177 phosphorylation. The results of this study indicate that AMPKα1 targets the inhibitory phosphorylation Thr495 site in the calmodulin-binding domain of eNOS to attenuate basal NO production and phenylephrine-induced vasoconstriction.


Sign in / Sign up

Export Citation Format

Share Document