scholarly journals RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins

1997 ◽  
Vol 94 (8) ◽  
pp. 3596-3601 ◽  
Author(s):  
S. D. Chandler ◽  
A. Mayeda ◽  
J. M. Yeakley ◽  
A. R. Krainer ◽  
X.-D. Fu
1999 ◽  
Vol 19 (3) ◽  
pp. 1853-1863 ◽  
Author(s):  
Akila Mayeda ◽  
Gavin R. Screaton ◽  
Sharon D. Chandler ◽  
Xiang-Dong Fu ◽  
Adrian R. Krainer

ABSTRACT We report striking differences in the substrate specificities of two human SR proteins, SF2/ASF and SC35, in constitutive splicing. β-Globin pre-mRNA (exons 1 and 2) is spliced indiscriminately with either SR protein. Human immunodeficiency virus tatpre-mRNA (exons 2 and 3) and immunoglobulin μ-chain (IgM) pre-mRNA (exons C3 and C4) are preferentially spliced with SF2/ASF and SC35, respectively. Using in vitro splicing with mutated or chimeric derivatives of the tat and IgM pre-mRNAs, we defined specific combinations of segments in the downstream exons, which mediate either positive or negative effects to confer SR protein specificity. A series of recombinant chimeric proteins consisting of domains of SF2/ASF and SC35 in various combinations was used to localize trans-acting domains responsible for substrate specificity. The RS domains of SF2/ASF and SC35 can be exchanged without effect on substrate specificity. The RNA recognition motifs (RRMs) of SF2/ASF are active only in the context of a two-RRM structure, and RRM2 has a dominant role in substrate specificity. In contrast, the single RRM of SC35 can function alone, but its substrate specificity can be influenced by the presence of an additional RRM. The RRMs behave as modules that, when present in different combinations, can have positive, neutral, or negative effects on splicing, depending upon the specific substrate. We conclude that SR protein-specific recognition of specific positive and negative pre-mRNA exonic elements via one or more RRMs is a crucial determinant of the substrate specificity of SR proteins in constitutive splicing.


2013 ◽  
Vol 110 (30) ◽  
pp. E2802-E2811 ◽  
Author(s):  
A. Clery ◽  
R. Sinha ◽  
O. Anczukow ◽  
A. Corrionero ◽  
A. Moursy ◽  
...  

2005 ◽  
Vol 25 (1) ◽  
pp. 150-162 ◽  
Author(s):  
Francesca Vitali ◽  
Anke Henning ◽  
Florian C Oberstrass ◽  
Yann Hargous ◽  
Sigrid D Auweter ◽  
...  

1998 ◽  
Vol 18 (2) ◽  
pp. 685-693 ◽  
Author(s):  
Laura E. Hake ◽  
Raul Mendez ◽  
Joel D. Richter

ABSTRACT CPEB is an RNA binding protein that interacts with the maturation-type cytoplasmic polyadenylation element (CPE) (consensus UUUUUAU) to promote polyadenylation and translational activation of maternal mRNAs in Xenopus laevis. CPEB, which is conserved from mammals to invertebrates, is composed of three regions: an amino-terminal portion with no obvious functional motif, two RNA recognition motifs (RRMs), and a cysteine-histidine region that is reminiscent of a zinc finger. In this study, we investigated the physical properties of CPEB required for RNA binding. CPEB can interact with RNA as a monomer, and phosphorylation, which modifies the protein during oocyte maturation, has little effect on RNA binding. Deletion mutations of CPEB have been overexpressed inEscherichia coli and used in a series of RNA gel shift experiments. Although a full-length and a truncated CPEB that lacks 139 amino-terminal amino acids bind CPE-containing RNA avidly, proteins that have had either RRM deleted bind RNA much less efficiently. CPEB that has had the cysteine-histidine region deleted has no detectable capacity to bind RNA. Single alanine substitutions of specific cysteine or histidine residues within this region also abolish RNA binding, pointing to the importance of this highly conserved domain of the protein. Chelation of metal ions by 1,10-phenanthroline inhibits the ability of CPEB to bind RNA; however, RNA binding is restored if the reaction is supplemented with zinc. CPEB also binds other metals such as cobalt and cadmium, but these destroy RNA binding. These data indicate that the RRMs and a zinc finger region of CPEB are essential for RNA binding.


Gene ◽  
1997 ◽  
Vol 186 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Yasuyuki Kurihara ◽  
Takashi Nagata ◽  
Takao Imai ◽  
Ado Hiwatashi ◽  
Masataka Horiuchi ◽  
...  

Biochemistry ◽  
2017 ◽  
Vol 56 (36) ◽  
pp. 4757-4761 ◽  
Author(s):  
Eliezra Glasser ◽  
Anant A. Agrawal ◽  
Jermaine L. Jenkins ◽  
Clara L. Kielkopf

Sign in / Sign up

Export Citation Format

Share Document