scholarly journals Characterization of a GC-rich Region Containing Sp1 Binding Site(s) as a Constitutive Responsive Element of the α2(I) Collagen Gene in Human Fibroblasts

1995 ◽  
Vol 270 (9) ◽  
pp. 4299-4304 ◽  
Author(s):  
Takeshi Tamaki ◽  
Kazunori Ohnishi ◽  
Christoph Hartl ◽  
E. Carwile LeRoy ◽  
Maria Trojanowska
Author(s):  
Alexander Samokhvalov ◽  
Yan Liu ◽  
John Simon
Keyword(s):  

2021 ◽  
pp. 1-15
Author(s):  
Zengzhi Si ◽  
Yake Qiao ◽  
Kai Zhang ◽  
Zhixin Ji ◽  
Jinling Han

Sweetpotato, <i>Ipomoea batatas</i> (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes’ expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that <i>IbNBS75</i>, <i>IbNBS219</i>, and <i>IbNBS256</i> respond to stem nematode infection; <i>Ib­NBS240</i>, <i>IbNBS90</i>, and <i>IbNBS80</i> respond to cold stress, while <i>IbNBS208</i>, <i>IbNBS71</i>, and <i>IbNBS159</i> respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.


Endocrines ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 54-64
Author(s):  
Manuela Cipolletti ◽  
Sara Pescatori ◽  
Filippo Acconcia

Metastatic estrogen receptor α (ERα)-expressing breast cancer (BC) occurs after prolonged patient treatment with endocrine therapy (ET) (e.g., aromatase inhibitors—AI; 4OH-tamoxifen—4OH-Tam). Often these metastatic BCs express a mutated ERα variant (e.g., Y537S), which is transcriptionally hyperactive, sustains uncontrolled proliferation, and renders tumor cells insensitive to ET drugs. Therefore, new molecules blocking hyperactive Y537S ERα mutation transcriptional activity are requested. Here we generated an MCF-7 cell line expressing the Y537S ERα mutation stably expressing an estrogen-responsive element (ERE) promoter, which activity can be monitored in living cells. Characterization of this cell line shows both hyperactive basal transcriptional activity with respect to normal MCF-7 cells, which stably express the same ERE-based promoter and a decreased effect of selective ER downregulators (SERDs) in reducing Y537S ERα mutant transcriptional activity with respect to wild type ERα transcriptional activity. Kinetic profiles of Y537S ERα mutant-based transcription produced by both drugs inducing receptor degradation and siRNA-mediated depletion of specific proteins (e.g., FOXA1 and caveolin1) reveals biphasic dynamics of the inhibition of the receptor-regulated transcriptional effects. Overall, we report a new model where to study the behavior of the Y537S ERα mutant that can be used for the identification of new targets and pathways regulating the Y537S ERα transcriptional activity.


Sign in / Sign up

Export Citation Format

Share Document