scholarly journals A Mutation in theEscherichia coli secYGene That Produces Distinct Effects on Inner Membrane Protein Insertion and Protein Export

1998 ◽  
Vol 273 (20) ◽  
pp. 12451-12456 ◽  
Author(s):  
John A. Newitt ◽  
Harris D. Bernstein
2000 ◽  
Vol 28 (4) ◽  
pp. 495-499 ◽  
Author(s):  
K. Tokatlidis ◽  
S. Vial ◽  
P. Luciano ◽  
M. Vergnolle ◽  
S. Clémence

The protein import pathway that targets proteins to the mitochondrial matrix has been extensively characterized in the past 15 years. Variations of this import pathway account for the sorting of proteins to other compartments as well, but the insertion of integral inner membrane proteins lacking a presequence is mediated by distinct translocation machinery. This consists of a complex of Tim9 and Tim10, two homologous, Zn2+-binding proteins that chaperone the passage of the hydrophobic precursor across the aqueous inter-membrane space. The precursor is then targeted to another, inner-membrane-bound, complex of at least five subunits that facilitates insertion. Biochemical and genetic experiments have identified the key components of this process; we are now starting to understand the molecular mechanism. This review highlights recent advances in this new membrane protein insertion pathway.


2001 ◽  
Vol 153 (5) ◽  
pp. 1085-1096 ◽  
Author(s):  
Marc Preuss ◽  
Klaus Leonhard ◽  
Kai Hell ◽  
Rosemary A. Stuart ◽  
Walter Neupert ◽  
...  

The biogenesis of mitochondria requires the integration of many proteins into the inner membrane from the matrix side. The inner membrane protein Oxa1 plays an important role in this process. We identified Mba1 as a second mitochondrial component that is required for efficient protein insertion. Like Oxa1, Mba1 specifically interacts both with mitochondrial translation products and with conservatively sorted, nuclear-encoded proteins during their integration into the inner membrane. Oxa1 and Mba1 overlap in function and substrate specificity, but both can act independently of each other. We conclude that Mba1 is part of the mitochondrial protein export machinery and represents the first component of a novel Oxa1-independent insertion pathway into the mitochondrial inner membrane.


2020 ◽  
Author(s):  
Alyson R. Warr ◽  
Rachel T. Giorgio ◽  
Matthew K. Waldor

The function of cvpA, a bacterial gene predicted to encode an inner membrane protein, is largely unknown. Early studies in E. coli linked cvpA to Colicin V secretion and recent work revealed that it is required for robust intestinal colonization by diverse enteric pathogens. In enterohemorrhagic E. coli (EHEC), cvpA is required for resistance to the bile salt deoxycholate (DOC). Here, we carried out genome-scale transposon-insertion mutagenesis and spontaneous suppressor analysis to uncover cvpA’s genetic interactions and identify common pathways that rescue the sensitivity of a ΔcvpA EHEC mutant to DOC. These screens demonstrated that mutations predicted to activate the σE-mediated extracytoplasmic stress response bypass the ΔcvpA mutant’s susceptibility to DOC. Consistent with this idea, we found that deletions in rseA and msbB and direct overexpression of rpoE restored DOC resistance to the ΔcvpA mutant. Analysis of the distribution of CvpA homologs revealed that this inner membrane protein is conserved across diverse bacterial phyla, in both enteric and non-enteric bacteria that are not exposed to bile. Together, our findings suggest that CvpA plays a role in cell envelope homeostasis in response to DOC and similar stress stimuli in diverse bacterial species. IMPORTANCE Several enteric pathogens, including Enterohemorrhagic E. coli (EHEC), require CvpA to robustly colonize the intestine. This inner membrane protein is also important for secretion of a colicin and EHEC resistance to the bile salt deoxycholate (DOC), but its function is unknown. Genetic analyses carried out here showed that activation of the σE-mediated extracytoplasmic stress response restored the resistance of a cvpA mutant to DOC, suggesting that CvpA plays a role in cell envelope homeostasis. The conservation of CvpA across diverse bacterial phyla suggests that this membrane protein facilitates cell envelope homeostasis in response to varied cell envelope perturbations.


Sign in / Sign up

Export Citation Format

Share Document