scholarly journals Rat Peroxisome Proliferator-activated Receptors and Brown Adipose Tissue Function during Cold Acclimatization

1999 ◽  
Vol 274 (33) ◽  
pp. 23368-23377 ◽  
Author(s):  
Hebe M. Guardiola-Diaz ◽  
Stefan Rehnmark ◽  
Nobuteru Usuda ◽  
Tatjana Albrektsen ◽  
Dorothee Feltkamp ◽  
...  
2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract BackgroundPrescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant sedation, weight gain, and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated.MethodsTo investigate the efficacy of interventions of statin aimed at reversing SGA-induced dyslipidemia, young Sprague Dawley (SD) rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks.ResultsOlanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but had no significant effect on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. A down-regulating of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) expression was observed in brown adipose tissue (BAT) in the olanzapine-only group, following a significant decrease in the ratio of phosphorylated PKA (p-PKA)/PKA. Interestingly, these protein changes could be reversed by co-treatment with O+B. Our results demonstrated simvastatin to be effective in ameliorating TC and TG elevated by olanzapine.ConclusionsModulation of BAT activity could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract Background Prescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant weight gain and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated.Methods To investigate the efficacy of statin interventions for reversing SGA-induced dyslipidemia, young Sprague Dawley rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks. Results Olanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but without significant effects on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. Pronounced activation of lipogenic gene expression in the liver and down-regulated expression of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) in brown adipose tissue (BAT) was observed in the olanzapine-only group. Interestingly, these protein changes could be reversed by co-treatment with O+B. Conclusions Simvastatin is effective in ameliorating TC and TG elevated by olanzapine. Modulation of BAT activity by statins could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


Endocrinology ◽  
2012 ◽  
Vol 153 (3) ◽  
pp. 1162-1173 ◽  
Author(s):  
Meritxell Rosell ◽  
Elayne Hondares ◽  
Sadahiko Iwamoto ◽  
Frank J. Gonzalez ◽  
Martin Wabitsch ◽  
...  

Retinol binding protein-4 (RBP4) is a serum protein involved in the transport of vitamin A. It is known to be produced by the liver and white adipose tissue. RBP4 release by white fat has been proposed to induce insulin resistance. We analyzed the regulation and production of RBP4 in brown adipose tissue. RBP4 gene expression is induced in brown fat from mice exposed to cold or treated with peroxisome proliferator-activated receptor (PPAR) agonists. In brown adipocytes in culture, norepinephrine, cAMP, and activators of PPARγ and PPARα induced RBP4 gene expression and RBP4 protein release. The induction of RBP4 gene expression by norepinephrine required intact PPAR-dependent pathways, as evidenced by impaired response of the RBP4 gene expression to norepinephrine in PPARα-null brown adipocytes or in the presence of inhibitors of PPARγ and PPARα. PPARγ and norepinephrine can also induce the RBP4 gene in white adipocytes, and overexpression of PPARα confers regulation by this PPAR subtype to white adipocytes. The RBP4 gene promoter transcription is activated by cAMP, PPARα, and PPARγ. This is mediated by a PPAR-responsive element capable of binding PPARα and PPARγ and required also for activation by cAMP. The induction of the RBP4 gene expression by norepinephrine in brown adipocytes is protein synthesis dependent and requires PPARγ-coactivator-1-α, which acts as a norepinephine-induced coactivator of PPAR on the RBP4 gene. We conclude that PPARγ- and PPARα-mediated signaling controls RBP4 gene expression and releases in brown adipose tissue, and thermogenic activation induces RBP4 gene expression in brown fat through mechanisms involving PPARγ-coactivator-1-α coactivation of PPAR signaling.


Author(s):  
Ivo Romauld Sagayaraj ◽  
Akilashree S ◽  
Brindha Devi P

Objective: Obesity is the major problem which may lead to many other health ailments such as atherosclerosis, stroke, and depression. Both the cause as well as the treatment lies in the adipose tissue. The two main adipocytes, white adipose tissue (WAT) and brown adipose tissue (BAT) are responsible for the accumulation of fat and transformation of fat into heat, respectively. This review discusses the induction of BAT and browning of WAT by different pathways and activators to decrease the rate of obesity. Methods: Understanding the regulators, activators and secreted proteins which induce browning of WAT to BAT, as the BAT engage in thermogenesis process and transform fat into heat rather than storing it (WAT). Some of the core regulators are peroxisome proliferator-activated receptor-γ, PRDM16, PGC-1α. Results: A basic study explained about the origin of BAT and its functions, the function of hormones in BAT growth and its regulations. These studies provided the platform to understand about the mechanism of regulators, activators and secreted proteins which help in treating obesity and its related disorders by inducing the amount of BAT. Conclusion: The major health ailments caused by obesity can be reduced by increasing the activity of BAT and transforming WAT into BAT. A challenging way to treat these ailments is by regulating the activators and hormones responsible for the induction of BAT, so it transforms the excess fat into heat and avoiding the accumulation of fat. By understanding the role of regulators in the adipose tissue can provide various methods to reduce the chance of obesity and enhance efficient treatment in both children and adults.


Author(s):  
Chang-Hyung Lee ◽  
Young-A Choi ◽  
Sung-Jin Heo ◽  
Parkyong Song

Brown adipose tissue (BAT) plays an important role in thermogenic regulation, which contributes to alleviating diet-induced obesity through uncoupling protein 1 (UCP1) expression. While cold exposure and physical exercise are known to increase BAT development and UCP1 expression, the contribution of hyperbaric oxygen (HBO) therapy to BAT maturation remains largely unknown. Here, we show that HBO treatment sufficiently increases BAT volumes and thermogenic protein levels in Sprague-Dawley rats. Through 18F-FDG PET/CT analysis, we found that exposure to high-pressure oxygen (1.5–2.5 ATA) for 7 consecutive days increased radiolabeled glucose uptake and BAT development to an extent comparable to cold exposure. Consistent with BAT maturation, thermogenic protein levels, such as those of UCP1 and peroxisome proliferator-activated receptor γ coactivator 1α (PGC−1α), were largely increased by HBO treatment. Taken together, we suggest HBO therapy as a novel method of inducing BAT development, considering its therapeutic potential for the treatment of metabolic disorders.


2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract Background: Prescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant weight gain and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated. Methods: To investigate the efficacy of statin interventions for reversing SGA-induced dyslipidemia, young Sprague Dawley rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d .), simvastatin (3.0 mg/kg, t.i.d .), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks.Results: Olanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but without significant effects on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. Pronounced activation of lipogenic gene expression in the liver and down-regulated expression of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) in brown adipose tissue (BAT) was observed in the olanzapine-only group. Interestingly, these protein changes could be reversed by co-treatment with O+B. Conclusions: Simvastatin is effective in ameliorating TC and TG elevated by olanzapine. Modulation of BAT activity by statins could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


Sign in / Sign up

Export Citation Format

Share Document