scholarly journals Dominant Negative Role of the Glutamic Acid Residue Conserved in the Pyruvate Kinase M1Isozyme in the Heterotropic Allosteric Effect Involving Fructose-1,6-bisphosphate

2000 ◽  
Vol 275 (13) ◽  
pp. 9150-9156 ◽  
Author(s):  
Yoshitaka Ikeda ◽  
Naoyuki Taniguchi ◽  
Tamio Noguchi
2018 ◽  
Author(s):  
Jamie A. Macpherson ◽  
Alina Theisen ◽  
Laura Masino ◽  
Louise Fets ◽  
Paul C. Driscoll ◽  
...  

ABSTRACTAllosteric regulation is central to the role of the glycolytic enzyme pyruvate kinase M2 (PKM2) in cellular metabolism. Multiple activating and inhibitory allosteric ligands regulate PKM2 activity by controlling the equilibrium between high activity tetramers and low activity dimers and monomers. However, it remains elusive how allosteric inputs upon simultaneous binding of different ligands are integrated to regulate PKM2 activity. Here, we show that, in the presence of the allosteric inhibitor L-phenylalanine (Phe), the activator fructose 1,6-bisphosphate (FBP) can induce PKM2 tetramerisation, but fails to maximally increase enzymatic activity. Guided by a new computational framework we developed to identify residues that mediate FBP-induced allostery, we generated two PKM2 mutants, A327S and C358A, in which activation by FBP remains intact but cannot be attenuated by Phe. Our findings demonstrate a role for residues involved in FBP-induced allostery in enabling the integration of allosteric input from Phe and reveal a mechanism that underlies the co-ordinate regulation of PKM2 activity by multiple allosteric ligands.


Development ◽  
1997 ◽  
Vol 124 (8) ◽  
pp. 1485-1495 ◽  
Author(s):  
C.A. Micchelli ◽  
E.J. Rulifson ◽  
S.S. Blair

We have investigated the role of the Notch and Wingless signaling pathways in the maintenance of wing margin identity through the study of cut, a homeobox-containing transcription factor and a late-arising margin-specific marker. By late third instar, a tripartite domain of gene expression can be identified about the dorsoventral compartment boundary, which marks the presumptive wing margin. A central domain of cut- and wingless-expressing cells are flanked on the dorsal and ventral side by domains of cells expressing elevated levels of the Notch ligands Delta and Serrate. We show first that cut acts to maintain margin wingless expression, providing a potential explanation of the cut mutant phenotype. Next, we examined the regulation of cut expression. Our results indicate that Notch, but not Wingless signaling, is autonomously required for cut expression. Rather, Wingless is required indirectly for cut expression; our results suggest this requirement is due to the regulation by wingless of Delta and Serrate expression in cells flanking the cut and wingless expression domains. Finally, we show that Delta and Serrate play a dual role in the regulation of cut and wingless expression. Normal, high levels of Delta and Serrate can trigger cut and wingless expression in adjacent cells lacking Delta and Serrate. However, high levels of Delta and Serrate also act in a dominant negative fashion, since cells expressing such levels cannot themselves express cut or wingless. We propose that the boundary of Notch ligand along the normal margin plays a similar role as part of a dynamic feedback loop that maintains the tripartite pattern of margin gene expression.


2007 ◽  
Vol 388 (4) ◽  
pp. 373-380 ◽  
Author(s):  
Dmitri M. Hushpulian ◽  
Andrew A. Poloznikov ◽  
Pavel A. Savitski ◽  
Alexandra M. Rozhkova ◽  
Tatyana A. Chubar ◽  
...  

Abstract The role of the conserved glutamic acid residue in anionic plant peroxidases with regard to substrate specificity and stability was examined. A Glu141Phe substitution was generated in tobacco anionic peroxidase (TOP) to mimic neutral plant peroxidases such as horseradish peroxidase C (HRP C). The newly constructed enzyme was compared to wild-type recombinant TOP and HRP C expressed in E. coli. The Glu141Phe substitution supports heme entrapment during the refolding procedure and increases the reactivation yield to 30% compared to 7% for wild-type TOP. The mutation reduces the activity towards ABTS, o-phenylenediamine, guaiacol and ferrocyanide to 50% of the wild-type activity. No changes are observed with respect to activity for the lignin precursor substrates, coumaric and ferulic acid. The Glu141Phe mutation destabilizes the enzyme upon storage and against radical inactivation, mimicking inactivation in the reaction course. Structural alignment shows that Glu141 in TOP is likely to be hydrogen-bonded to Gln149, similar to the Glu143-Lys151 bond in Arabidopsis A2 peroxidase. Supposedly, the Glu141-Gln149 bond provides TOP with two different modes of stabilization: (1) it prevents heme dissociation, i.e., it ‘guards’ heme inside the active center; and (2) it constitutes a shield to protect the active center from solvent-derived radicals.


1989 ◽  
Vol 9 (11) ◽  
pp. 5012-5021 ◽  
Author(s):  
D Schlossman ◽  
D Withers ◽  
P Welsh ◽  
A Alexander ◽  
J Robertus ◽  
...  

The gene for the A chain of ricin toxin was fused to a beta-galactosidase marker cistron via a DNA sequence encoding a short collagen linker, and the tripartite fusion protein was expressed in Escherichia coli. Site-specific mutagenesis was used to change glutamic acid residue 177 to aspartic acid or alanine. When the mutant proteins were expressed, purified, and tested quantitatively for enzymatic activity, the carboxylate function at position 177 was found not to be absolutely essential for ricin toxin A-chain catalysis.


1989 ◽  
Vol 9 (11) ◽  
pp. 5012-5021
Author(s):  
D Schlossman ◽  
D Withers ◽  
P Welsh ◽  
A Alexander ◽  
J Robertus ◽  
...  

The gene for the A chain of ricin toxin was fused to a beta-galactosidase marker cistron via a DNA sequence encoding a short collagen linker, and the tripartite fusion protein was expressed in Escherichia coli. Site-specific mutagenesis was used to change glutamic acid residue 177 to aspartic acid or alanine. When the mutant proteins were expressed, purified, and tested quantitatively for enzymatic activity, the carboxylate function at position 177 was found not to be absolutely essential for ricin toxin A-chain catalysis.


Blood ◽  
2012 ◽  
Vol 120 (19) ◽  
pp. 4028-4037 ◽  
Author(s):  
Shinobu Matsuura ◽  
Yukiko Komeno ◽  
Kristen E. Stevenson ◽  
Joseph R. Biggs ◽  
Kentson Lam ◽  
...  

Abstract Mutations of RUNX1 are detected in patients with myelodysplastic syndrome (MDS). In particular, C-terminal truncation mutations lack a transcription regulatory domain and have increased DNA binding through the runt homology domain. The expression of the runt homology domain, RUNX1(41-214), in mouse hematopoietic cells induced progression to MDS and acute myeloid leukemia. Analysis of premyelodysplastic animals found expansion of c-Kit+Sca-1+Lin− cells and skewed differentiation to myeloid at the expense of the lymphoid lineage. These abnormalities correlate with the phenotype of Runx1-deficient animals, as expected given the reported dominant-negative role of C-terminal mutations over the full-length RUNX1. However, MDS is not observed in Runx1-deficient animals. Gene expression profiling found that RUNX1(41-214) c-Kit+Sca-1+Lin− cells have an overlapping yet distinct gene expression profile from Runx1-deficient animals. Moreover, an unexpected parallel was observed between the hematopoietic phenotype of RUNX1(41-214) and aged animals. Genes deregulated in RUNX1(41-214), but not in Runx1-deficient animals, were inversely correlated with the aging gene signature of HSCs, suggesting that disruption of the expression of genes related to normal aging by RUNX1 mutations contributes to development of MDS. The data presented here provide insights into the mechanisms of development of MDS in HSCs by C-terminal mutations of RUNX1.


2012 ◽  
Vol 3 (8) ◽  
pp. 55-58
Author(s):  
K.K. Somashekara K.K. Somashekara ◽  
◽  
B.N. Shivalingappa B.N. Shivalingappa

Sign in / Sign up

Export Citation Format

Share Document