scholarly journals A Novel Chromosome Region Maintenance 1-independent Nuclear Export Signal of the Large Form of Hepatitis Delta Antigen That Is Required for the Viral Assembly

2000 ◽  
Vol 276 (11) ◽  
pp. 8142-8148 ◽  
Author(s):  
Chia-Huei Lee ◽  
Shin C. Chang ◽  
C. H. Herbert Wu ◽  
Ming-Fu Chang
2012 ◽  
Vol 87 (3) ◽  
pp. 1596-1604 ◽  
Author(s):  
Cheng Huang ◽  
Jia-Yin Jiang ◽  
Shin C. Chang ◽  
Yeou-Guang Tsay ◽  
Mei-Ru Chen ◽  
...  

ABSTRACTNuclear export is an important process that not only regulates the functions of cellular factors but also facilitates the assembly of viral nucleoprotein complexes. Chromosome region maintenance 1 (CRM1) that mediates the transport of proteins bearing the classical leucine-rich nuclear export signal (NES) is the best-characterized nuclear export receptor. Recently, several CRM1-independent nuclear export pathways were also identified. The nuclear export of the large form of hepatitis delta antigen (HDAg-L), a nucleocapsid protein of hepatitis delta virus (HDV), which contains a CRM1-independent proline-rich NES, is mediated by the host NES-interacting protein (NESI). The mechanism of the NESI protein in mediating nuclear export is still unknown. In this study, NESI was characterized as a highly glycosylated membrane protein. It interacted and colocalized well in the nuclear envelope with lamin A/C and nucleoporins. Importantly, HDAg-L could be coimmunoprecipitated with lamin A/C and nucleoporins. In addition, binding of the cargo HDAg-L to the C terminus of NESI was detected for the wild-type protein but not for the nuclear export-defective HDAg-L carrying a P205A mutation [HDAg-L(P205A)]. Knockdown of lamin A/C effectively reduced the nuclear export of HDAg-L and the assembly of HDV. These data indicate that by forming complexes with lamin A/C and nucleoporins, NESI facilitates the CRM1-independent nuclear export of HDAg-L.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Ho Yee Joyce Fung ◽  
Szu-Chin Fu ◽  
Chad A Brautigam ◽  
Yuh Min Chook

The Chromosome Region of Maintenance 1 (CRM1) protein mediates nuclear export of hundreds of proteins through recognition of their nuclear export signals (NESs), which are highly variable in sequence and structure. The plasticity of the CRM1-NES interaction is not well understood, as there are many NES sequences that seem incompatible with structures of the NES-bound CRM1 groove. Crystal structures of CRM1 bound to two different NESs with unusual sequences showed the NES peptides binding the CRM1 groove in the opposite orientation (minus) to that of previously studied NESs (plus). Comparison of minus and plus NESs identified structural and sequence determinants for NES orientation. The binding of NESs to CRM1 in both orientations results in a large expansion in NES consensus patterns and therefore a corresponding expansion of potential NESs in the proteome.


Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 990-998 ◽  
Author(s):  
Jared C. Pache ◽  
Douglas W. Burton ◽  
Leonard J. Deftos ◽  
Randolph H. Hastings

PTHrP is an oncofetal protein with distinct proliferative and antiapoptotic roles that are affected by nucleocytoplasmic shuttling. The protein’s nuclear export is sensitive to leptomycin B, consistent with a chromosome region maintenance protein 1-dependent pathway. We determined that the 109–139 region of PTHrP was involved in its nuclear export by demonstrating that a C-terminal truncation mutant, residues 1–108, exports at a reduced rate, compared with the wild-type 139 amino acid isoform. We searched for potential nuclear export sequences within the 109–139 region, which is leucine rich. Comparisons with established nuclear export sequences identified a putative consensus signal at residues 126–136. Deletion of this region resulted in nuclear export characteristics that closely matched those of the C-terminal truncation mutant. Confocal microscopic analyses of transfected 293, COS-1, and HeLa cells showed that steady-state nuclear levels of the truncated and deletion mutants were significantly greater than levels of wild-type PTHrP and were unaffected by leptomycin B, unlike the wild-type protein. In addition, both mutants demonstrated greatly reduced nuclear export with assays using nuclear preparations and intact cells. Based on these results, we conclude that the 126–136 amino acid sequence closely approximates the structure of a chromosome region maintenance protein 1-dependent leucine-rich nuclear export signal and is critical for nuclear export of PTHrP.


2005 ◽  
Vol 79 (13) ◽  
pp. 8113-8120 ◽  
Author(s):  
Yun-Hsin Wang ◽  
Shin C. Chang ◽  
Cheng Huang ◽  
Ya-Ping Li ◽  
Chia-Huei Lee ◽  
...  

ABSTRACT The process of host factor-mediated nucleocytoplasmic transport is critical for diverse cellular events in eukaryotes and the life cycle of viruses. We have previously identified a chromosome region maintenance 1-independent nuclear export signal (NES) at the C terminus of the large form of hepatitis delta antigen (HDAg), designated NES(HDAg-L) that is required for the assembly of hepatitis delta virus (HDV) (C.-H. Lee et al., J. Biol. Chem. 276:8142-8148, 2001). To look for interacting proteins of the NES(HDAg-L), yeast two-hybrid screening was applied using the GAL4-binding domain fused to the NES(HDAg-L) as bait. Among the positive clones, one encodes a protein, designated NESI [NES(HDAg-L) interacting protein] that specifically interacted with the wild-type NES(HDAg-L) but not with the export/package-defective HDAg-L mutant, NES*(HDAg-L), in which Pro-205 has been replaced by Ala. Northern blot analysis revealed NESI as the gene product of a 1.9-kb endogenous mRNA transcript that is present predominantly in human liver tissue. NESI consists of 467 amino acid residues and bears a putative actin-binding site and a bipartite nuclear localization signal. Specific interaction between HDAg-L and NESI was further confirmed by coimmunoprecipitation and immunofluorescence staining. Overexpression of antisense NESI RNAs inhibited the expression of NESI and abolished HDAg-L-mediated nuclear export and assembly of HDV genomic RNA. These data indicate a critical role of NESI in the assembly of HDV through interaction with HDAg-L.


2004 ◽  
Vol 78 (15) ◽  
pp. 8120-8134 ◽  
Author(s):  
Shuji Sato ◽  
Cromwell Cornillez-Ty ◽  
David W. Lazinski

ABSTRACT Hepatitis delta virus (HDV) expresses two essential proteins with distinct functions. The small hepatitis delta antigen (HDAg-S) is expressed throughout replication and is needed to promote that process. The large form (HDAg-L) is farnesylated, is expressed only at later times via RNA editing of the amber/W site, and is required for virion assembly. When HDAg-L is artificially expressed at the onset of replication, it strongly inhibits replication. However, there is controversy concerning whether HDAg-L expressed naturally at later times as a consequence of editing and replication can similarly inhibit replication. Here, by stabilizing the predicted secondary structure downstream from the amber/W site, a replication-competent HDV mutant that exhibited levels of editing higher than those of the wild type was created. This mutant expressed elevated levels of HDAg-L early during replication, and at later times, its replication aborted prematurely. No further increase in amber/W editing was observed following the cessation of replication, indicating that editing was coupled to replication. A mutation in HDAg-L and a farnesyl transferase inhibitor were both used to abolish the ability of HDAg-L to inhibit replication. Such treatments rescued the replication defect of the overediting mutant, and even higher levels of amber/W editing resulted. It was concluded that when expressed naturally during replication, HDAg-L is able to inhibit replication and thereby inhibit amber/W editing and its own synthesis. In addition, the structure adjacent to the amber/W site is suboptimal for editing, and this creates a window of time in which replication can occur in the absence of HDAg-L.


1991 ◽  
Vol 88 (19) ◽  
pp. 8490-8494 ◽  
Author(s):  
F. L. Chang ◽  
P. J. Chen ◽  
S. J. Tu ◽  
C. J. Wang ◽  
D. S. Chen

2011 ◽  
Vol 411 (5) ◽  
pp. 1114-1127 ◽  
Author(s):  
Mercedes Spínola-Amilibia ◽  
José Rivera ◽  
Miguel Ortiz-Lombardía ◽  
Antonio Romero ◽  
José L. Neira ◽  
...  

2000 ◽  
Vol 275 (48) ◽  
pp. 37311-37316 ◽  
Author(s):  
Tadashi Goto ◽  
Naoya Kato ◽  
Suzane Kioko Ono-Nita ◽  
Hideo Yoshida ◽  
Motoyuki Otsuka ◽  
...  

2009 ◽  
Vol 84 (3) ◽  
pp. 1406-1413 ◽  
Author(s):  
Brian C. Lin ◽  
Dawn A. Defenbaugh ◽  
John L. Casey

ABSTRACT Hepatitis delta virus (HDV) RNA forms an unbranched rod structure that is associated with hepatitis delta antigen (HDAg) in cells replicating HDV. Previous in vitro binding experiments using bacterially expressed HDAg showed that the formation of a minimal ribonucleoprotein complex requires an HDV unbranched rod RNA of at least about 300 nucleotides (nt) and suggested that HDAg binds the RNA as a multimer of fixed size. The present study specifically examines the role of HDAg multimerization in the formation of the HDV ribonucleoprotein complex (RNP). Disruption of HDAg multimerization by site-directed mutagenesis was found to profoundly alter the nature of RNP formation. Mutant HDAg proteins defective for multimerization exhibited neither the 300-nt RNA size requirement for binding nor specificity for the unbranched rod structure. The results unambiguously demonstrate that HDAg binds HDV RNA as a multimer and that the HDAg multimer is formed prior to binding the RNA. RNP formation was found to be temperature dependent, which is consistent with conformational changes occurring on binding. Finally, analysis of RNPs constructed with unbranched rod RNAs successively longer than the minimum length indicated that multimeric binding is not limited to the first HDAg bound and that a minimum RNA length of between 604 and 714 nt is required for binding of a second multimer. The results confirm the previous proposal that HDAg binds as a large multimer and demonstrate that the multimer is a critical determinant of the structure of the HDV RNP.


Sign in / Sign up

Export Citation Format

Share Document