scholarly journals A Carboxyl Leucine-Rich Region of Parathyroid Hormone-Related Protein Is Critical for Nuclear Export

Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 990-998 ◽  
Author(s):  
Jared C. Pache ◽  
Douglas W. Burton ◽  
Leonard J. Deftos ◽  
Randolph H. Hastings

PTHrP is an oncofetal protein with distinct proliferative and antiapoptotic roles that are affected by nucleocytoplasmic shuttling. The protein’s nuclear export is sensitive to leptomycin B, consistent with a chromosome region maintenance protein 1-dependent pathway. We determined that the 109–139 region of PTHrP was involved in its nuclear export by demonstrating that a C-terminal truncation mutant, residues 1–108, exports at a reduced rate, compared with the wild-type 139 amino acid isoform. We searched for potential nuclear export sequences within the 109–139 region, which is leucine rich. Comparisons with established nuclear export sequences identified a putative consensus signal at residues 126–136. Deletion of this region resulted in nuclear export characteristics that closely matched those of the C-terminal truncation mutant. Confocal microscopic analyses of transfected 293, COS-1, and HeLa cells showed that steady-state nuclear levels of the truncated and deletion mutants were significantly greater than levels of wild-type PTHrP and were unaffected by leptomycin B, unlike the wild-type protein. In addition, both mutants demonstrated greatly reduced nuclear export with assays using nuclear preparations and intact cells. Based on these results, we conclude that the 126–136 amino acid sequence closely approximates the structure of a chromosome region maintenance protein 1-dependent leucine-rich nuclear export signal and is critical for nuclear export of PTHrP.

2005 ◽  
Vol 280 (23) ◽  
pp. 21854-21857 ◽  
Author(s):  
Marilyn E. Thompson ◽  
Cheryl L. Robinson-Benion ◽  
Jeffrey T. Holt

Mutations in the breast cancer susceptibility gene 1 (BRCA1) account for a substantial percentage of familial breast and ovarian cancers. Although BRCA1 is thought to function within the nucleus, it has also been located in the cytoplasm. In addition, BRCA1 accumulates in the nucleus of cells treated with leptomycin B, an inhibitor of chromosome region maintenance 1-mediated nuclear export, indicative of its active nuclear export via this pathway. The nuclear export signal in BRCA1 has been described as consisting of amino acid residues 81–99. However, a number of other tumor suppressors have multiple nuclear export sequences, and we sought to determine whether BRCA1 did also. Here, we report that BRCA1 contains a second nuclear export sequence that comprises amino acid residues 22–30. By use of the human immunodeficiency virus-1 Rev complementation assay, this sequence was shown to confer export capability to an export-defective Rev fusion protein. The level of export activity was comparable with that of residues 81–99 comprising the previously reported nuclear export sequence in BRCA1. Mutation of leucine 28 to an alanine reduced nuclear export by ∼75%. In MCF-7 cells stably transfected with a BRCA1 cDNA containing mutations in this novel sequence or the previously reported export sequence, BRCA1 accumulated in the nucleus. These data imply that BRCA1 contains at least two leucine-dependent nuclear export sequences.


2012 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Mohd Fakharul Zaman Raja Yahya ◽  
Hasidah Mohd Sidek

Malaria parasites, Plasmodium can infect a wide range of hosts including humans and rodents. There are two copies of mitogen activated protein kinases (MAPKs) in Plasmodium, namely MAPK1 and MAPK2. The MAPKs have been studied extensively in the human Plasmodium, P. falciparum. However, the MAPKs from other Plasmodium species have not been characterized and it is therefore the premise of presented study to characterize the MAPKs from other Plasmodium species-P. vivax, P. knowlesi, P. berghei, P. chabaudi and P.yoelli using a series of publicly available bioinformatic tools. In silico data indicates that all Plasmodium MAPKs are nuclear-localized and contain both a nuclear localization signal (NLS) and a Leucine-rich nuclear export signal (NES). The activation motifs of TDY and TSH were found to be fully conserved in Plasmodium MAPK1 and MAPK2, respectively. The detailed manual inspection of a multiple sequence alignment (MSA) construct revealed a total of 17 amino acid stack patterns comprising of different amino acids present in MAPKJ and MAPK2 respectively, with respect to rodent and human Plasmodia. It is proposed that these amino acid stack patterns may be useful in explaining the disparity between rodent and human Plasmodium MAPKs. 


2012 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Mohd Fakharul Zaman Raja Yahya ◽  
Hasidah Mohd Sidek

Malaria parasites, Plasmodium can infect a wide range ofhosts including humans and rodents. There are two copies ofmitogen activated protein kinases (MAPKs) in Plasmodium, namely MAPK1 and MAPK2. The MAPKs have been studied extensively in the human Plasmodium, P. falciparum. However, the MAPKs from other Plasmodium species have not been characterized and it is therefore the premise ofpresented study to characterize the MAPKs from other Plasmodium species-P. vivax, P. knowlesi, P. berghei, P. chabaudi and P.yoelli using a series ofpublicly available bioinformatic tools. In silico data indicates that all Plasmodium MAPKs are nuclear-localizedandcontain both a nuclear localization signal (NLS) anda Leucine-rich nuclear export signal (NES). The activation motifs ofTDYand TSH werefound to befully conserved in Plasmodium MAPK1 and MAPK2, respectively. The detailed manual inspection ofa multiple sequence alignment (MSA) construct revealed a total of 17 amino acid stack patterns comprising ofdifferent amino acids present in MAPK1 and MAPK2 respectively, with respect to rodent and human Plasmodia. 1t is proposed that these amino acid stack patterns may be useful in explaining the disparity between rodent and human Plasmodium MAPKs.


2008 ◽  
Vol 83 (6) ◽  
pp. 2531-2539 ◽  
Author(s):  
Xiaojuan Li ◽  
Fanxiu Zhu

ABSTRACT Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus 8 (KSHV) is an immediate-early phosphorylated tegument protein and has been shown to play important roles at both early and late stages of viral infection. Homologues of ORF45 exist only in gammaherpesviruses, and their homology is limited. These homologues differ in their protein lengths and subcellular localizations. We and others have reported that KSHV ORF45 is localized predominantly in the cytoplasm, whereas its homologue in murine herpesvirus 68 is localized exclusively in the nucleus. We observed that ORF45s of rhesus rhadinovirus and herpesvirus saimiri are found exclusively in the nucleus. As a first step toward understanding the mechanism underlying the distinct intracellular distribution of KSHV ORF45, we identified the signals that control its subcellular localization. We found that KSHV ORF45 accumulated rapidly in the nucleus in the presence of leptomycin B, an inhibitor of CRM1 (exportin 1)-dependent nuclear export, suggesting that it could shuttle between the nucleus and cytoplasm. Mutational analysis revealed that KSHV ORF45 contains a CRM1-dependent, leucine-rich-like nuclear export signal and an adjacent nuclear localization signal. Replacement of the key residues with alanines in these motifs of ORF45 disrupts its shuttling between the cytoplasm and nucleus. The resulting ORF45 mutants have restricted subcellular localizations, being found exclusively either in the cytoplasm or in the nucleus. Recombinant viruses were reconstituted by introduction of these mutations into KSHV bacterial artificial chromosome BAC36. The resultant viruses have distinct phenotypes. A mutant virus in which ORF45 is restricted to the cytoplasm behaves as an ORF45-null mutant and produces 5- to 10-fold fewer progeny viruses than the wild type. In contrast, mutants in which the ORF45 protein is mostly restricted to the nucleus produce numbers of progeny viruses similar to those produced by the wild type. These data suggest that the subcellular localization signals of ORF45 have important functional roles in KSHV lytic replication.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Ho Yee Joyce Fung ◽  
Szu-Chin Fu ◽  
Chad A Brautigam ◽  
Yuh Min Chook

The Chromosome Region of Maintenance 1 (CRM1) protein mediates nuclear export of hundreds of proteins through recognition of their nuclear export signals (NESs), which are highly variable in sequence and structure. The plasticity of the CRM1-NES interaction is not well understood, as there are many NES sequences that seem incompatible with structures of the NES-bound CRM1 groove. Crystal structures of CRM1 bound to two different NESs with unusual sequences showed the NES peptides binding the CRM1 groove in the opposite orientation (minus) to that of previously studied NESs (plus). Comparison of minus and plus NESs identified structural and sequence determinants for NES orientation. The binding of NESs to CRM1 in both orientations results in a large expansion in NES consensus patterns and therefore a corresponding expansion of potential NESs in the proteome.


2000 ◽  
Vol 113 (3) ◽  
pp. 451-459 ◽  
Author(s):  
M. Callanan ◽  
N. Kudo ◽  
S. Gout ◽  
M. Brocard ◽  
M. Yoshida ◽  
...  

In this work, we have investigated the role of CRM1/XPO1, a protein involved in specific export of proteins and RNA from the nucleus, in early Xenopus embryogenesis. The cloning of the Xenopus laevis CRM1, XCRM1, revealed remarkable conservation of the protein during evolution (96.7% amino acid identity between Xenopus and human). The protein and mRNA are maternally expressed and are present during early embryogenesis. However, our data show that the activity of the protein is developmentally regulated. Embryonic development is insensitive to leptomycin B, a specific inhibitor of CRM1, until the neurula stage. Moreover, the nuclear localization of CRM1 changes concomitantly with the appearance of the leptomycin B sensitivity. These data suggest that CRM1, present initially in an inactive form, becomes functional before the initiation of the neurula stage during gastrula-neurula transition, a period known to correspond to a critical transition in the pattern of gene expression. Finally, we confirmed the gastrula-neurula transition-dependent activation of CRM1 by pull-down experiments as well as by the study of the intracellular localization of a green fluorescent protein tagged with a nuclear export signal motif during early development. This work showed that the regulated activity of CRM1 controls specific transitions during normal development and thus might be a key regulator of early embryogenesis.


2006 ◽  
Vol 80 (20) ◽  
pp. 10021-10035 ◽  
Author(s):  
Janneke Verhagen ◽  
Michelle Donnelly ◽  
Gillian Elliott

ABSTRACT A new group of nucleocytoplasmic shuttling proteins has recently been identified in the structural proteins encoded by several alphaherpesvirus UL47 genes. Nuclear import and export signals for the bovine herpesvirus type 1 UL47 protein (VP8 or bUL47) have been described previously. Here, we study the trafficking of bUL47 in detail and identify an import signal different from that shown before. It comprises a 20-residue N-terminal peptide that is fully transferable and targets a large, normally cytosolic protein to the nucleus. A conserved RRPRRS motif within this peptide was shown to be essential but not sufficient for nuclear targeting. Using interspecies heterokaryon assays, we further demonstrate that the export activity of the published leucine-rich nuclear export signal (NES) is also transferable to a large protein but is functionally weak compared to the activity of the HIV-1 Rev NES. We show that nuclear export dictated by this bUL47 NES is sensitive to leptomycin B (LMB) and therefore dependent on the export receptor CRM-1. However, nuclear export of full-length bUL47 is fully resistant to LMB, suggesting the presence of an additional NES. We go on to identify a second NES in bUL47 within a 28-residue peptide that is in close proximity to but entirely separable from the N-terminal import signal, and we use fluorescence loss in photobleaching to confirm its activity. This NES is resistant to leptomycin B, and therefore utilizes an export receptor other than CRM-1. As this new sequence bears little similarity to other export signals so far defined, we suggest it may be involved in bUL47 export from the nucleus via a novel cellular receptor.


2002 ◽  
Vol 158 (5) ◽  
pp. 849-854 ◽  
Author(s):  
Jan Peter Siebrasse ◽  
Elias Coutavas ◽  
Reiner Peters

Signal-dependent nuclear protein export was studied in perforated nuclei and isolated nuclear envelopes of Xenopus oocytes by optical single transporter recording. Manually isolated and purified oocyte nuclei were attached to isoporous filters and made permeable for macromolecules by perforation. Export of a recombinant protein (GG-NES) containing the nuclear export signal (NES) of the protein kinase A inhibitor through nuclear envelope patches spanning filter pores could be induced by the addition of GTP alone. Export continued against a concentration gradient, and was NES dependent and inhibited by leptomycin B and GTPγS, a nonhydrolyzable GTP analogue. Addition of recombinant RanBP3, a potential cofactor of CRM1-dependent export, did not promote GG-NES export at stoichiometric concentration but gradually inhibited export at higher concentrations. In isolated filter-attached nuclear envelopes, export of GG-NES was virtually abolished in the presence of GTP alone. However, a preformed export complex consisting of GG-NES, recombinant human CRM1, and RanGTP was rapidly exported. Unexpectedly, export was strongly reduced when the export complex contained RanGTPγS or RanG19V/Q69L-GTP, a GTPase-deficient Ran mutant. This paper shows that nuclear transport, previously studied in intact and permeabilized cells only, can be quantitatively analyzed in perforated nuclei and isolated nuclear envelopes.


1999 ◽  
Vol 354 (1389) ◽  
pp. 1601-1609 ◽  
Author(s):  
R. T. Hay ◽  
L. Vuillard ◽  
J. M. P. Desterro ◽  
M. S. Rodriguez

In unstimulated cells the transcription factor NF–κB is held in the cytoplasm in an inactive state by IκB inhibitor proteins. Ultimately activation of NF–κB is achieved by ubiquitination and proteasome–mediated degradation of IκBα and we have therefore investigated factors which control this proteolysis. Signal–induced degradation of IκBα exposes the nuclear localization signal of NF–κB, thus allowing it to translocate into the nucleus and activate transcription from responsive genes. An autoregulatory loop is established when NF–κB induces expression of the IκBα gene and newly synthesized IκBα accumulates in the nucleus where it negatively regulates NF–κB–dependent transcription. As part of this post–induction repression, the nuclear export signal on IκBα mediates transport of NF–κB–IκBα complexes from the nucleus to the cytoplasm. As nuclear export of IκBα is blocked by leptomycin B this drug was used to examine the effect of cellular location on susceptibility of IκBα to signal–induced degradation. In the presence of leptomycin B, IκBα is accumulated in the nucleus and in this compartment is resistant to signal–induced degradation. Thus signal–induced degradation of IκBα is mainly, if not exclusively a cytoplasmic process. An efficient nuclear export of IκBα is therefore essential for maintaining a low level of IκBα in the nucleus and allowing NF–κB to be transcriptionally active upon cell stimulation. We have detected a modified form of IκBα, conjugated to the small ubiquitin–like protein SUMO–1, which is resistant to signal–induced degradation. SUMO–1 modified IκBα remains associated with NF–κB and thus overexpression of SUMO–1 inhibits the signal–induced activation of NF–κB–dependent transcription. Reconstitution of the conjugation reaction with highly purified proteins demonstrated that in the presence of a novel E1 SUMO–1 activating enzyme, Ubch9 directly conjugated SUMO–1 to IκBα on residues K21 and K22, which are also used for ubiquitin modification. Thus, while ubiquitination targets proteins for rapid degradation, SUMO–1 modification acts antagonistically to generate proteins resistant to degradation.


Sign in / Sign up

Export Citation Format

Share Document