scholarly journals Identification and cDNA Cloning of a Novel RNA-binding Protein That Interacts with the Cyclic Nucleotide-responsive Sequence in the Type-1 Plasminogen Activator Inhibitor mRNA

2000 ◽  
Vol 276 (5) ◽  
pp. 3341-3347 ◽  
Author(s):  
Joanne H. Heaton ◽  
Wendy M. Dlakic ◽  
Mensur Dlakic ◽  
Thomas D. Gelehrter
2003 ◽  
Vol 89 (06) ◽  
pp. 959-966 ◽  
Author(s):  
Wendy Dlakic ◽  
Thomas Gelehrter ◽  
Joanne Heaton

SummaryThe plasminogen activator-plasmin cascade is involved in multiple physiological and pathological processes including fibrinolysis, wound healing, fibrosis, angiogenesis, embryo implantation and tumor cell invasion and metastasis. Plasminogen activator-inhibitor type 1 (PAI-1) is the major physiological regulator of plasminogen activation. PAI-1 is expressed in a variety of mammalian cells and is regulated by growth factors, cytokines and hormones, including agents that elevate cAMP levels. Although cyclic nucleotide regulation of PAI-1 is observed in diverse cell types in various species, including human, limited studies have addressed the mechanism of this regulation. Here we review our work on the regulation of PAI-1 mRNA degradation in HTC rat hepatoma cells, describing the cis-acting cAMP-responsive sequence in the transcript and a novel RNA binding protein that interacts with it. Potential mechanisms by which this RNA-binding protein may be involved in cyclic nucleotide regulation of mRNA stability are discussed and cAMP regulation of PAI-1 in other systems is summarized.Part of this paper was originally presented at the joint meetings of the 16th International Congress of the International Society of Fibrinolysis and Proteolysis (ISFP) and the 17th International Fibrinogen Workshop of the International Fibrinogen Research Society (IFRS) held in Munich, Germany, September, 2002.


2007 ◽  
Vol 27 (18) ◽  
pp. 6469-6483 ◽  
Author(s):  
John L. Goodier ◽  
Lili Zhang ◽  
Melissa R. Vetter ◽  
Haig H. Kazazian

ABSTRACT LINE-1 retrotransposons constitute one-fifth of human DNA and have helped shape our genome. A full-length L1 encodes a 40-kDa RNA-binding protein (ORF1p) and a 150-kDa protein (ORF2p) with endonuclease and reverse transcriptase activities. ORF1p is distinctive in forming large cytoplasmic foci, which we identified as cytoplasmic stress granules. A phylogenetically conserved central region of the protein is critical for wild-type localization and retrotransposition. Yeast two-hybrid screens revealed several RNA-binding proteins that coimmunoprecipitate with ORF1p and colocalize with ORF1p in foci. Two of these proteins, YB-1 and hnRNPA1, were previously reported in stress granules. We identified additional proteins associated with stress granules, including DNA-binding protein A, 9G8, and plasminogen activator inhibitor RNA-binding protein 1 (PAI-RBP1). PAI-RBP1 is a homolog of VIG, a part of the Drosophila melanogaster RNA-induced silencing complex (RISC). Other RISC components, including Ago2 and FMRP, also colocalize with PAI-RBP1 and ORF1p. We suggest that targeting ORF1p, and possibly the L1 RNP, to stress granules is a mechanism for controlling retrotransposition and its associated genetic and cellular damage.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Juraj Hlavaty ◽  
Reinhard Ertl ◽  
Ingrid Miller ◽  
Cordula Gabriel

Objective.Some effects of progesterone on glioma cells can be explained through the slow, genomic mediated responsevianuclear receptors; the other effects suggest potential role of a fast, nongenomic action mediated by membrane-associated progesterone receptors.Methods.The effects of progesterone treatment on the expression levels of progesterone receptor membrane component 1 (PGRMC1), plasminogen activator inhibitor 1 RNA-binding protein (PAIRBP1), and progestin and adipoQ receptor 7 (PAQR7) on both mRNA and protein levels were investigated in spheroids derived from human glioma cell lines U-87 MG and LN-229.Results.The only significant alteration at the transcript level was the decrease in PGRMC1 mRNA observed in LN-229 spheroids treated with 30 ng/mL of progesterone. No visible alterations at the protein levels were observed using immunohistochemical analysis. Stimulation of U-87 MG spheroids resulted in an increase of PGRMC1 but a decrease of PAIRBP1 protein. Double immunofluorescent detection of PGRMC1 and PAIRBP1 identified the two proteins to be partially colocalized in the cells. Western blot analysis revealed the expected bands for PGRMC1 and PAIRBP1, whereas two bands were detected for PAQR7.Conclusion.The progesterone action is supposed to be mediatedviamembrane-associated progesterone receptors as the nuclear progesterone receptor was absent in tested spheroids.


Sign in / Sign up

Export Citation Format

Share Document