scholarly journals Antagonism of the Actions of Peroxisome Proliferator-activated Receptor-α by Bile Acids

2001 ◽  
Vol 276 (50) ◽  
pp. 47154-47162 ◽  
Author(s):  
Christopher J. Sinal ◽  
Michung Yoon ◽  
Frank J. Gonzalez

The peroxisome proliferator-activated receptor-α (PPARα) is a ligand-activated transcription factor that regulates the expression of a number of genes critical for fatty acid β-oxidation. Because a number of substrates and intermediates of this metabolic pathway serve as ligand activators of this receptor, homeostatic control of fatty acid metabolism is achieved. Evidence also exists for PPARα-dependent regulation of genes encoding critical enzymes of bile acid biosynthesis. To determine whether the primary products of bile acid biosynthesis, cholic acid and chenodeoxycholic acid, were capable of modulating PPARα function, a variety ofin vivoandin vitroapproaches were utilized. Feeding a bile acid-enriched diet significantly reduced the degree of hepatomegaly and induction of target genes encoding enzymes of fatty acid β-oxidation caused by treatment with the potent PPARα ligand Wyeth-14,643. Convergent data from mechanistic studies indicate that bile acids interfere with transactivation by PPARα at least in part by impairing the recruitment of transcriptional coactivators. The results of this study provide the first evidence in favor of the existence of compounds, normally found within the body, that are capable of antagonizing the physiological actions of PPARα. The impact of PPARα antagonism by endogenous bile acids is likely to be limited under normal conditions and to have only minimal effects on bile acid homeostasis. However, during certain pathophysiological states where intracellular bile acid concentrations are elevated, meaningful effects on PPARα-dependent target gene regulation are possible.

2000 ◽  
Vol 275 (37) ◽  
pp. 28947-28953 ◽  
Author(s):  
Mary C. Hunt ◽  
Yi-Zeng Yang ◽  
Gösta Eggertsen ◽  
Claes M. Carneheim ◽  
Mats Gåfvels ◽  
...  

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Natasha Fillmore ◽  
Junhui Sun ◽  
Danielle Springer ◽  
Elizabeth Murphy

Alterations in glucose and fatty acid metabolism are believed to contribute to the development of heart failure. Peroxisome Proliferator Activated Receptor α (PPARα) is a transcription factor that regulates fatty acid metabolism and is frequently reported to be reduced in heart failure. However, it is controversial whether this decline in PPARα mediates the development of cardiac hypertrophy and heart failure. To improve our understanding of the role of cardiac PPARα we generated a tamoxifen inducible cardiac-specific PPARα knockout mouse (cPPAR -/- ). Control (Mer-Cre-Mer and Flox -/- ) mice and cPPAR -/- (Mer-Cre-Mer and Flox +/+ ) mice were treated with tamoxifen at ~2.5 months and were studied 5 weeks after treatment. We verified loss of cardiac PPARα using western blot. cPPAR -/- mice appear healthy with normal body weight gain and survival. To examine the impact of cardiac deletion of PPARα on cardiac function we performed echocardiography on control and cPPAR -/- . There was no reduction in systolic function between control and cPPAR -/- mice. Ejection fraction (Control, 56.3±0.9; cPPAR -/- , 59.7±0.1) and fractional shortening (Control, 29.1±0.5; cPPAR -/- , 31.5±0.1) were similar in cPPAR -/- compared to control hearts. Interestingly however, baseline heart rate was significantly lower in cPPAR -/- versus control mice (Control, 531.3±18.3; cPPAR -/- , 459.8±2.9 bpm). In addition to having normal cardiac function, heart weights were similar between control and cPPAR -/- mice. Overall, these data indicate that an acute reduction in myocardial PPARα per se does not cause cardiac dysfunction. However these data do not exclude the possibility that loss of PPARα could drive cardiac pathology in the context of other signals.


2006 ◽  
Vol 20 (1) ◽  
pp. 65-79 ◽  
Author(s):  
Jyrki J. Eloranta ◽  
Diana Jung ◽  
Gerd A. Kullak-Ublick

Abstract Na+-taurocholate cotransporting polypeptide (NTCP) is the major bile acid uptake system in human hepatocytes. NTCP and the ileal transporter ASBT (apical sodium-dependent bile acid transporter) are two sodium-dependent transporters critical for the enterohepatic circulation of bile acids. The hASBT gene is known to be activated by the glucocorticoid receptor (GR). Here we show that GR also induces the endogenous hNTCP gene and transactivates the reporter-linked hNTCP promoter, in the presence of its ligand dexamethasone. Mutational analysis of the hNTCP promoter identified a functional GR response element, with which GR directly interacts within living cells. The GR/dexamethasone activation of endogenous hNTCP expression was suppressed by bile acids, in a manner dependent on the bile acid receptor farnesoid X receptor. Overexpression of the farnesoid X receptor-inducible transcriptional repressor small heterodimer partner also suppressed the GR/dexamethasone-activation of the hNTCP promoter. The peroxisome proliferator-activated receptor-γ coactivator-1α enhanced the GR/dexamethasone activation of the hNTCP promoter. In conclusion, the hNTCP promoter is activated by GR in a ligand-dependent manner, similarly to the hASBT promoter. Thus, glucocorticoids may coordinately regulate the major bile acid uptake systems in human liver and intestine. The GR/dexamethasone activation of the hNTCP promoter is counteracted by bile acids and small heterodimer partner, providing a negative feedback mechanism for bile acid uptake in human hepatocytes.


2000 ◽  
Vol 20 (5) ◽  
pp. 1868-1876 ◽  
Author(s):  
Rick B. Vega ◽  
Janice M. Huss ◽  
Daniel P. Kelly

ABSTRACT Peroxisome proliferator-activated receptor α (PPARα) plays a key role in the transcriptional control of genes encoding mitochondrial fatty acid β-oxidation (FAO) enzymes. In this study we sought to determine whether the recently identified PPAR gamma coactivator 1 (PGC-1) is capable of coactivating PPARα in the transcriptional control of genes encoding FAO enzymes. Mammalian cell cotransfection experiments demonstrated that PGC-1 enhanced PPARα-mediated transcriptional activation of reporter plasmids containing PPARα target elements. PGC-1 also enhanced the transactivation activity of a PPARα-Gal4 DNA binding domain fusion protein. Retroviral vector-mediated expression studies performed in 3T3-L1 cells demonstrated that PPARα and PGC-1 cooperatively induced the expression of PPARα target genes and increased cellular palmitate oxidation rates. Glutathione S-transferase “pulldown” studies revealed that in contrast to the previously reported ligand-independent interaction with PPARγ, PGC-1 binds PPARα in a ligand-influenced manner. Protein-protein interaction studies and mammalian cell hybrid experiments demonstrated that the PGC-1–PPARα interaction involves an LXXLL domain in PGC-1 and the PPARα AF2 region, consistent with the observed ligand influence. Last, the PGC-1 transactivation domain was mapped to within the NH2-terminal 120 amino acids of the PGC-1 molecule, a region distinct from the PPARα interacting domains. These results identify PGC-1 as a coactivator of PPARα in the transcriptional control of mitochondrial FAO capacity, define separable PPARα interaction and transactivation domains within the PGC-1 molecule, and demonstrate that certain features of the PPARα–PGC-1 interaction are distinct from that of PPARγ–PGC-1.


Sign in / Sign up

Export Citation Format

Share Document