scholarly journals Zfp206, Oct4, and Sox2 Are Integrated Components of a Transcriptional Regulatory Network in Embryonic Stem Cells

2009 ◽  
Vol 284 (45) ◽  
pp. 31327-31335 ◽  
Author(s):  
Hong-bing Yu ◽  
Galih Kunarso ◽  
Felicia Huimei Hong ◽  
Lawrence W. Stanton
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Na Li ◽  
Zhaoyu Du ◽  
Yunxiang Li ◽  
Wenjing Xu ◽  
Yumei Yang ◽  
...  

Embryonic stem cells (ESCs) are pluripotent stem cells that have indefinite self-renewal capacities under appropriate culture conditions in vitro. The pluripotency maintenance and proliferation of these cells are delicately governed by the concert effect of a complex transcriptional regulatory network. Herein, we discovered that p57Kip2 (p57), a cyclin-dependent kinase inhibitor canonically inhibiting cell proliferation, played a role in suppressing the pluripotency state of mouse ESCs (mESCs). p57 knockdown significantly stimulated the expressions of core pluripotency factors NANOG, OCT4, and SOX2, while p57 overexpression inhibited the expressions of these factors in mESCs. In addition, consistent with its function in somatic cells, p57 suppressed mESC proliferation. Further analysis showed that p57 could interact with and contribute to the activation of p53 in mESCs. In conclusion, the present study showed that p57 could antagonize the pluripotency state and the proliferation process of mESCs. This finding uncovers a novel function of p57 and provides new evidence for elucidating the complex regulatory of network of mESC fate.


2020 ◽  
Vol 34 (13-14) ◽  
pp. 950-964 ◽  
Author(s):  
Peng Gao ◽  
Changya Chen ◽  
Elizabeth D. Howell ◽  
Yan Li ◽  
Joanna Tober ◽  
...  

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 263-264
Author(s):  
Kubra Z Cilkiz ◽  
Emilie C Baker ◽  
Penny K Riggs ◽  
Ronald D Randel ◽  
David G Riley ◽  
...  

Abstract This study investigated whether DNA methylation patterns changed over the first five yr of life within prenatally stressed (PNS) heifer calves compared to change within a Control group. Prenatal stress was induced by the transportation of pregnant Brahman cows for 2-hr periods at 60±5, 80± 5, 100±5, 120±5, and140±5d of gestation. White blood cells were sampled from the same 6 PNS heifer calves and 8 Control heifer calves at 28 d and 5 yr of age. The DNA methylation data were generated through Reduced Representation Bisulfite Sequencing. Based on results of mapping and bioinformatics analyses, 73,758 hypermethylated and 73,367 hypomethylated CpG sites, 375 hypermethylated and 377 hypomethylated CHG sites, 735 hypermethylated and 842 hypomethylated CHH (C = cytosine; G = guanine; H = either adenine, thymine, or cytosine) sites were obtained from 28-d-old PNS calves compared to when they had matured into 5-yr-old PNS cows (P ≤ 0.05). The 28-d-old Control heifer calves contained 53,005 hypermethylated and 57,103 hypomethylated CpG sites, 200 hypermethylated and 202 hypomethylated CHG sites, 439 hypermethylated and 535 hypomethylated CHH sites compared to when they matured into 5-yr-old Control cows (P ≤ 0.05). As DNA methylation of gene promoter regions is associated with reduced transcription activity, strongly hypermethylated and hypomethylated CpG sites located in promoter regions underwent Ingenuity Pathway Analysis. The top canonical pathways altered by strongly hypermethylated and hypomethylated CpG sites between 28-d-old and 5-yr-old PNS cows were 4-1BB Signaling in T Lymphocytes (P = 0.00169) and Transcriptional Regulatory Network in Embryonic Stem Cells (P = 0.000744). Mineralocorticoid Biosynthesis (P = 0.00901) and Transcriptional Regulatory Network in Embryonic Stem Cells (P = 0.000804) were the other top canonical pathways altered between 28-d-old and 5-yr-old Control cows. PNS calves appeared to develop an altered epigenome compared to Control group calves during the first five yr from birth.


2020 ◽  
Author(s):  
Yogesh Kumar ◽  
Pratibha Tripathi ◽  
Majid Mehravar ◽  
Michael J. Bullen ◽  
Varun K. Pandey ◽  
...  

SUMMARYEpigenetic regulators and transcription factors establish distinct regulatory networks for gene regulation to maintain the embryonic stem cells (ESC) state. Although much has been learned regarding individual epigenetic regulators, their combinatorial functions remain elusive. Here, we report combinatorial functions of histone demethylases (HDMs) in gene regulation of mouse ESCs that are currently unknown. We generated a histone demethylome (HDMome) map of 20 well-characterized HDMs based on their genome-wide binding. This revealed co-occupancy of HDMs in different combinations; predominantly, KDM1A-KDM4B-KDM6A and JARID2-KDM4A-KDM4C-KDM5B co-occupy at enhancers and promoters, respectively. Comprehensive mechanistic studies uncover that KDM1A-KDM6A combinatorially modulates P300/H3K27ac, H3K4me1, H3K4me2 deposition and OCT4 recruitment that eventually directs the OCT4/CORE regulatory network for target gene expression; while co-operative actions of JARID2-KDM4A-KDM4C-KDM5B control H2AK119ub1 and bivalent marks of polycomb-repressive complexes that facilitates the PRC regulatory network for target gene repression. Thus, combinatorial functions of HDMs impact gene expression programs to maintain the ESC state.


2013 ◽  
Vol 35 (10) ◽  
pp. 1153-1166 ◽  
Author(s):  
Yin-Shan BAI ◽  
Li LI ◽  
Heng-Xi WEI ◽  
Cui ZHU ◽  
Shou-Quan ZHANG

2007 ◽  
Vol 104 (42) ◽  
pp. 16438-16443 ◽  
Author(s):  
Q. Zhou ◽  
H. Chipperfield ◽  
D. A. Melton ◽  
W. H. Wong

Sign in / Sign up

Export Citation Format

Share Document