scholarly journals The Eph Tyrosine Kinase Receptors EphB2 and EphA2 Are Novel Proteolytic Substrates of Tissue Factor/Coagulation Factor VIIa

2014 ◽  
Vol 289 (47) ◽  
pp. 32379-32391 ◽  
Author(s):  
Oskar Eriksson ◽  
Margareta Ramström ◽  
Katarina Hörnaeus ◽  
Jonas Bergquist ◽  
Dariush Mokhtari ◽  
...  
BMC Cancer ◽  
2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Oskar Eriksson ◽  
Åsa Thulin ◽  
Anna Asplund ◽  
Geeta Hegde ◽  
Sanjay Navani ◽  
...  

1990 ◽  
Vol 265 (2) ◽  
pp. 327-336 ◽  
Author(s):  
V J J Bom ◽  
R M Bertina

In the extrinsic pathway of blood coagulation, Factor X is activated by a complex of tissue factor, factor VII(a) and Ca2+ ions. Using purified human coagulation factors and a sensitive spectrophotometric assay for Factor Xa, we could demonstrate activation of Factor X by Factor VIIa in the absence of tissue-factor apoprotein, phospholipids and Ca2+. This finding allowed a kinetic analysis of the contribution of each of the cofactors. Ca2+ stimulated the reaction rate 10-fold at an optimum of 6 mM (Vmax. of 1.1 x 10(-3) min-1) mainly by decreasing the Km of Factor X (to 11.4 microM). In the presence of Ca2+, 25 microM-phospholipid caused a 150-fold decrease of the apparent Km and a 2-fold increase of the apparent Vmax. of the reaction; however, both kinetic parameters increased with increasing phospholipid concentration. Tissue-factor apoprotein contributed to the reaction rate mainly by an increase of the Vmax., in both the presence (40,500-fold) and absence (4900-fold) of phospholipid. The formation of a ternary complex of Factor VIIa with tissue-factor apoprotein and phospholipid was responsible for a 15 million-fold increase in the catalytic efficiency of Factor X activation. The presence of Ca2+ was absolutely required for the stimulatory effects of phospholipid and apoprotein. The data fit a general model in which the Ca2(+)-dependent conformation allows Factor VIIa to bind tissue-factor apoprotein and/or a negatively charged phospholipid surface resulting into a decreased intrinsic Km and an increased Vmax. for the activation of fluid-phase Factor X.


2019 ◽  
Vol 476 (19) ◽  
pp. 2909-2926
Author(s):  
Tina M. Misenheimer ◽  
Kraig T. Kumfer ◽  
Barbara E. Bates ◽  
Emily R. Nettesheim ◽  
Bradford S. Schwartz

Abstract The mechanism of generation of factor VIIa, considered the initiating protease in the tissue factor-initiated extrinsic limb of blood coagulation, is obscure. Decreased levels of plasma VIIa in individuals with congenital factor IX deficiency suggest that generation of VIIa is dependent on an activation product of factor IX. Factor VIIa activates IX to IXa by a two-step removal of the activation peptide with cleavages occurring after R191 and R226. Factor IXaα, however, is IX cleaved only after R226, and not after R191. We tested the hypothesis that IXaα activates VII with mutant IX that could be cleaved only at R226 and thus generate only IXaα upon activation. Factor IXaα demonstrated 1.6% the coagulant activity of IXa in a contact activation-based assay of the intrinsic activation limb and was less efficient than IXa at activating factor X in the presence of factor VIIIa. However, IXaα and IXa had indistinguishable amidolytic activity, and, strikingly, both catalyzed the cleavage required to convert VII to VIIa with indistinguishable kinetic parameters that were augmented by phospholipids, but not by factor VIIIa or tissue factor. We propose that IXa and IXaα participate in a pathway of reciprocal activation of VII and IX that does not require a protein cofactor. Since both VIIa and activated IX are equally plausible as the initiating protease for the extrinsic limb of blood coagulation, it might be appropriate to illustrate this key step of hemostasis as currently being unknown.


2006 ◽  
Vol 25 (4) ◽  
pp. 209-220
Author(s):  
S.M. Meiring ◽  
C.E. Roets ◽  
P.N. Badenhorst

Die tegniek van faagblootlegging is gebruik om ’n sikliese heptapeptied te selekteer wat met weefselfaktor(WF) kompeteer vir binding aan stollingsfaktor VIIa. Die aminosuurvolgorde van die peptied is Cys-Ala- Trp-Pro-His-Thr-Pro-Asp-Cys (C-AWPHTPD-C) en dit verleng die protrombientyd (PT) op ’n konsentrasie-afhanklike wyse. Die peptied beperk plaatjieklewing aan beide menslike endoteelsel- en weefselfaktormatrikse in ’n vloeikamermodel onder arteriële vloeitoestande. Die peptied funksioneer as ’n volledig mededingende inhibeerder van faktor VIIa met ’n inhibisiekonstante (Ki) van 123,2 μM. In sy huidige vorm is die peptied waarskynlik nie sterk genoeg om verder as antitrombotiese middel ontwikkel te word nie, maar verskillende strategieë kan gevolg word om die werking daarvan te versterk. AbstractFunctional characterisation of a factor VIIa inhibiting peptide, IP-7 selected by phage display technology By using the technique of phage display, we selected a cyclic heptapeptide sequence Cys-Ala-Trp-Pro-His-Thr-Pro-Asp-Cys (C-AWPHTPD-C) that competes with tissue factor for binding to coagulation factor VII. This peptide prolongs the prothrombin time (PT) in a concentration dependent way. It also reduces platelet adhesion to both human endothelial cell and tissue factor matrixes in a flow chamber under arterial flow conditions. Furthermore, it acts as a full competitive inhibitor of factor VIIa with an inhibition constant (Ki) of 123,2 μM. In its current form the peptide is probably not sufficiently potent for development as an antithrombotic agent, but different strategies could be followed to reinforce its performance.


1996 ◽  
Vol 271 (45) ◽  
pp. 28168-28175 ◽  
Author(s):  
Christine D. McCallum ◽  
Raymond C. Hapak ◽  
Pierre F. Neuenschwander ◽  
James H. Morrissey ◽  
Arthur E. Johnson

Blood ◽  
2011 ◽  
Vol 117 (20) ◽  
pp. 5514-5522 ◽  
Author(s):  
Emily K. Waters ◽  
Ryan M. Genga ◽  
Michael C. Schwartz ◽  
Jennifer A. Nelson ◽  
Robert G. Schaub ◽  
...  

Abstract Hemophilia A and B are caused by deficiencies in coagulation factor VIII (FVIII) and factor IX, respectively, resulting in deficient blood coagulation via the intrinsic pathway. The extrinsic coagulation pathway, mediated by factor VIIa and tissue factor (TF), remains intact but is negatively regulated by tissue factor pathway inhibitor (TFPI), which inhibits both factor VIIa and its product, factor Xa. This inhibition limits clot initiation via the extrinsic pathway, whereas factor deficiency in hemophilia limits clot propagation via the intrinsic pathway. ARC19499 is an aptamer that inhibits TFPI, thereby enabling clot initiation and propagation via the extrinsic pathway. The core aptamer binds tightly and specifically to TFPI. ARC19499 blocks TFPI inhibition of both factor Xa and the TF/factor VIIa complex. ARC19499 corrects thrombin generation in hemophilia A and B plasma and restores clotting in FVIII-neutralized whole blood. In the present study, using a monkey model of hemophilia, FVIII neutralization resulted in prolonged clotting times as measured by thromboelastography and prolonged saphenous-vein bleeding times, which are consistent with FVIII deficiency. ARC19499 restored thromboelastography clotting times to baseline levels and corrected bleeding times. These results demonstrate that ARC19499 inhibition of TFPI may be an effective alternative to current treatments of bleeding associated with hemophilia.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3141-3141 ◽  
Author(s):  
Samit Ghosh ◽  
Prosenjit Sen ◽  
Mirella Ezban ◽  
Usha R. Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract Recombinant coagulation factor VIIa (rFVIIa) has proven to be a safe and effective drug for treatment of bleeding episodes in hemophilia patients with inhibitors. However, rFVIIa is cleared from the circulation relatively fast, with circulating half-life of about 2–4 h, requiring repeated administration of rFVIIa for the effective treatment. Therefore, development of FVIIa analogs that could remain in the circulation for a longer period of time would be of a great value for improving the treatment options of rFVIIa. e.g., by prophylaxis. PEGylation of plasma proteins was shown to extend their circulatory half-lives but the PEGylation may also disrupt macromolecular interactions. In the present study we characterized the interaction of two glycoPEGylated analogs of rFVIIa, rFVIIa-10K PEG and rFVIIa-40K PEG, with its cofactor tissue factor (TF), substrate factor X (FX) and plasma inhibitors, tissue factor pathway inhibitor (TFPI) and antithrombin (AT). Both the PEGylated FVIIa analogs exhibited similar amidolytic activity as of wild-type rFVIIa (wt-rFVIIa) in the absence or presence of relipidated TF. The analogs were as effective as wt-rFVIIa in activating FX in the absence of TF. No significant differences were found between the PEGylated rFVIIa analogs and wt-rFVIIa in TF-dependent FX activation at saturating concentrations of rFVIIa, however, at lower concentrations of rFVIIa (10 to 50 pM), rFVIIa-10K PEG and rFVIIa-40K PEG activated FX at a slightly lower rate, 50% and 75%, respectively, of wt-rFVIIa. Further studies revealed that both AT/heparin and TFPI inhibited the PEGylated rFVIIa-TF complexes effectively but slightly at a lower rate compared to that was noted for wt-rFVIIa-TF. TFPI-Xa inhibited the PEGylated rFVIIa-TF and wt-rFVIIa-TF at a similar rate. On unperturbed HUVEC, wt-FVIIa (10 nM) could activate FX, albeit slowly, (1.7 nM/h) and the PEGylated rFVIIa activated FX even at much lower rates (0.23 nM/h for rFVIIa-10K PEG and 0.15 nM/h for rFVIIa-40K PEG). On stimulated HUVEC expressing TF, the PEGylated rFVIIa variants were slightly less effective at lower concentrations compared to wt-rFVIIa in activating FX, but no significant differences were found among them in activating factor X at saturating concentrations of rFVIIa (80–100 nM/h). The PEGylated rFVIIa analogs bound to cell surface TF were inhibited by TFPI-Xa complex at a similar rate as that was observed for wt-rFVIIa (IC50 in nM: 0.102 ± 0.032 for wt-rFVIIa, 0.111 ± 0.024 for rFVIIa-10K PEG, and 0.096 ± 0.019 for rFVIIa-40K PEG). AT/heparin inhibited rFVIIa-10K PEG bound to endothelial cell TF at a similar rate as it inhibited wt-rFVIIa (IC50 in μg/ml: wt-rFVIIa, 3.42 ± 068; rFVIIa-10K PEG, 3.56 ± 0.073), but the inhibition rate was slightly lower for rFVIIa-40K PEG bound to TF (IC50 5.92 ± 0.44 μg/ml). Overall, our present data suggest that long-acting PEGylated FVIIa analogs retain full enzymatic activity and can interact TF and FX effectively, and are inhibited by AT/heparin and TFPI-Xa as for wt-rFVIIa. Although the pegylated rFVIIa variants exhibited somewhat lower affinity towards TF, this may not critically affect the TF-driven FXa generation. Further work is needed to fully characterize these molecules.


Blood ◽  
2012 ◽  
Vol 119 (4) ◽  
pp. 924-932 ◽  
Author(s):  
Yascha W. van den Berg ◽  
Susanne Osanto ◽  
Pieter H. Reitsma ◽  
Henri H. Versteeg

Abstract It is now widely recognized that a strong correlation exists between cancer and aberrant hemostasis. Patients with various types of cancers, including pancreatic, colorectal, and gastric cancer, often develop thrombosis, a phenomenon commonly referred to as Trousseau syndrome. Reciprocally, components from the coagulation cascade also influence cancer progression. The primary initiator of coagulation, the transmembrane receptor tissue factor (TF), has gained considerable attention as a determinant of tumor progression. On complex formation with its ligand, coagulation factor VIIa, TF influences protease-activated receptor-dependent tumor cell behavior, and regulates integrin function, which facilitate tumor angiogenesis both in vitro and in mouse models. Furthermore, evidence exists that an alternatively spliced isoform of TF also affects tumor growth and tumor angiogenesis. In patient material, TF expression and TF cytoplasmic domain phosphorylation correlate with disease outcome in many, but not in all, cancer subtypes, suggesting that TF-dependent signal transduction events are a potential target for therapeutic intervention in selected types of cancer. In this review, we summarize our current understanding of the role of TF in tumor growth and metastasis, and speculate on anticancer therapy by targeting TF.


Sign in / Sign up

Export Citation Format

Share Document