scholarly journals Thrombin Stimulation of Vascular Adhesion Molecule-1 in Endothelial Cells Is Mediated by Protein Kinase C (PKC)-δ-NF-κB and PKC-ζ-GATA Signaling Pathways

2002 ◽  
Vol 278 (9) ◽  
pp. 6976-6984 ◽  
Author(s):  
Takashi Minami ◽  
Md. Ruhul Abid ◽  
Jie Zhang ◽  
George King ◽  
Tatsuhiko Kodama ◽  
...  
Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 981-987 ◽  
Author(s):  
RD Medh ◽  
L Santell ◽  
EG Levin

Abstract Trans retinoic acid (t-RA) stimulated the production of tissue plasminogen activator (tPA) in HeLa-S3 and human umbilical vein endothelial cells (huvecs) in a dose-dependent manner with maximal release (four to five times control) at 40 nmol/L and 40 mumol/L, respectively. In endothelial cells, the stimulation of tPA production by phorbol 12-myristate 13-acetate (PMA) was potentiated 1.9-fold by 10 mumol/L t-RA, or 1.8 times the additive effect. In HeLa cells, total tPA secretion with 10 nmol/L PMA was increased from 43 ng/mL to 96 ng/mL by 40 nmol/L t-RA, which was two times the additive effect. Higher concentrations of t-RA (400 nmol/L) depressed tPA secretion by itself and also suppressed PMA-induced tPA production by 50%. Histamine and thrombin also synergized with t-RA. t-RA (40 nmol/L) and 10 micrograms/mL histamine or 10 U/mL thrombin combined to induce tPA production 3.4 and 1.3 times the additive effect in HeLa cells. Cyclic adenosine monophosphate (cAMP) levels were not significantly affected by 10 nmol/L to 10 mumol/L t-RA. Nor did 10 nmol/L PMA and 40 nmol/L t- RA together affect cAMP levels, suggesting that t-RA-mediated potentiation of PMA-induced tPA production occurred via a mechanism that was independent of cAMP levels. Downregulation of protein kinase C (PKC) by pretreatment of huvecs with 100 nmol/L PMA completely blocked a secondary response to PMA, but did not have a significant effect on t- RA induction. Pretreatment with 10 mumol/L t-RA, on the other hand, did not significantly affect a secondary stimulus by 100 nmol/L PMA, but completely suppressed a secondary stimulation by 10 mumol/L t-RA alone. These studies suggest that the mechanism mediating t-RA stimulation of tPA production interacts with the PKC pathway, resulting in synergism.


2000 ◽  
Vol 279 (4) ◽  
pp. C906-C914 ◽  
Author(s):  
Arshad Rahman ◽  
Khandaker N. Anwar ◽  
Asrar B. Malik

We addressed the role of protein kinase C (PKC) isozymes in mediating tumor necrosis factor-α (TNF-α)-induced oxidant generation in endothelial cells, a requirement for nuclear factor-κB (NF-κB) activation and intercellular adhesion molecule-1 (ICAM-1) gene transcription. Depletion of the conventional (c) and novel (n) PKC isozymes following 24 h exposure of human pulmonary artery endothelial (HPAE) cells with the phorbol ester, phorbol 12-myristate 13-acetate (500 nM), failed to prevent TNF-α-induced oxidant generation. In contrast, inhibition of PKC-ζ synthesis by the antisense oligonucleotide prevented the oxidant generation following the TNF-α stimulation. We observed that PKC-ζ also induced the TNF-α-induced NF-κB binding to the ICAM-1 promoter and the resultant ICAM-1 gene transcription. We showed that expression of the dominant negative mutant of PKC-ζ prevented the TNF-α-induced ICAM-1 promoter activity, whereas overexpression of the wild-type PKC-ζ augmented the response. These data imply a critical role for the PKC-ζ isozyme in regulating TNF-α-induced oxidant generation and in signaling the activation of NF-κB and ICAM-1 transcription in endothelial cells.


1992 ◽  
Vol 287 (1) ◽  
pp. 31-36 ◽  
Author(s):  
J R Purkiss ◽  
M R Boarder

To investigate the stimulation of phosphatidic acid formation in bovine aortic endothelial cells by P2-purinergic agonists, we labelled AG4762 cells with [32P]P1 and stimulated in the presence of butanol. Under these conditions phospholipase D generated [32P]phosphatidylbutanol, whereas the [32P]phosphatidic acid from phospholipase C and diacylglycerol kinase was unchanged. The action of various purinergic agonists on both [32P]phosphatidic acid and [32P]phosphatidylbutanol was consistent with the presence of a P2Y receptor. The stimulation of phospholipase D was dependent on extracellular Ca2+ and was mostly transient (completed within 3 min), whereas the initial stimulation of phospholipase C was independent of extracellular Ca2+, followed by a Ca(2+)-dependent phase. The agonist stimulation of phospholipase D was dependent on protein kinase C, as judged by its sensitivity to the relatively selective protein kinase C inhibitor Ro 31-8220. These results show that purinergic-receptor-mediated stimulation of phosphatidic acid has three phases: an initial Ca(2+)-independent stimulation of phospholipase C, an early but transient Ca(2+)- and protein kinase C-dependent stimulation of phospholipase D, and a sustained Ca(2+)-dependent stimulation of phospholipase C. Using propranolol to inhibit phosphatidate phosphohydrolase, we provide evidence that phosphatidic acid derived from purinergic-receptor-mediated stimulation of the phospholipase C/diacylglycerol kinase route can itself be converted back into diacylglycerol.


Sign in / Sign up

Export Citation Format

Share Document