scholarly journals The Lip Lipoprotein fromNeisseria gonorrhoeaeStimulates Cytokine Release and NF-κB Activation in Epithelial Cells in a Toll-like Receptor 2-dependent Manner

2003 ◽  
Vol 278 (47) ◽  
pp. 46252-46260 ◽  
Author(s):  
Philip L. Fisette ◽  
Sanjay Ram ◽  
Jorunn M. Andersen ◽  
Wen Guo ◽  
Robin R. Ingalls
2008 ◽  
Vol 294 (6) ◽  
pp. L1049-L1054 ◽  
Author(s):  
K. L. Bailey ◽  
J. A. Poole ◽  
T. L. Mathisen ◽  
T. A. Wyatt ◽  
S. G. Von Essen ◽  
...  

Hog confinement workers are at high risk to develop chronic bronchitis as a result of their exposure to organic dust. Chronic bronchitis is characterized by inflammatory changes of the airway epithelium. A key mediator in inflammation is Toll-like receptor 2 (TLR2). We investigated the role of TLR2 in pulmonary inflammation induced by hog confinement dust. Normal human bronchial epithelial cells (NHBE) were grown in culture and exposed to hog confinement dust extract. Hog confinement dust upregulated airway epithelial cell TLR2 mRNA in a concentration- and time-dependent manner using real-time PCR. There was a similar increase in TLR2 protein at 48 h as shown by Western blot. TLR2 was upregulated on the surface of airway epithelial cells as shown by flow cytometry. A similar upregulation of pulmonary TLR2 mRNA and protein was shown in a murine model of hog confinement dust exposure. Hog confinement dust is known to stimulate epithelial cells to produce IL-6. To determine whether TLR2 expression was being regulated by IL-6, the production of IL-6 was blocked using an IL-6-neutralizing antibody. This resulted in attenuation of the dust-induced upregulation of TLR2. To further demonstrate the importance of IL-6 in the regulation of TLR2, NHBE were directly stimulated with recombinant human IL-6. IL-6 alone was able to upregulate TLR2 in airway epithelial cells. Hog confinement dust upregulates TLR2 in the airway epithelium through an IL-6-dependent mechanism.


2009 ◽  
Vol 77 (4) ◽  
pp. 1553-1560 ◽  
Author(s):  
Lorna M. Friis ◽  
Monika Keelan ◽  
Diane E. Taylor

ABSTRACT Gastrointestinal disease caused by Campylobacter jejuni is characterized by localized inflammation and the destruction of the epithelial cell barrier that forms host innate protection against pathogens. This can lead to an imbalance in fluid transport across the gastrointestinal tract, resulting in severe diarrhea. The mechanisms of host cell receptor recognition of C. jejuni and downstream immune signaling pathways leading to this inflammatory disease, however, remain unclear. The aim of this study was to analyze the mechanisms involved in C. jejuni induction of the acute-phase inflammatory response regulator interleukin-6 (IL-6). Polarized intestinal epithelial Caco-2 monolayers responded to infections with Salmonella enterica serovar Typhimurium and eight isolates of C. jejuni by an increase in levels of expression and secretion of IL-6. No such IL-6 response, however, was produced upon infection with the human commensal organism Lactobacillus rhamnosus GG. The IL-6 signaling pathway was further characterized using short interfering RNA complexes to block gene expression. The inhibition of myeloid differentiation primary response protein 88 (MyD88) expression in this manner did not affect C. jejuni-induced IL-6 secretion, suggesting a MyD88-independent route to IL-6 signal transduction in C. jejuni-infected human epithelial cells. However, a significant reduction in levels of IL-6 was evident in the absence of Toll-like receptor 2 (TLR-2) expression, implying a requirement for TLR-2 in C. jejuni recognition. Caco-2 cells were also treated with heat-inactivated and purified membrane components of C. jejuni to isolate the factor responsible for triggering IL-6 signaling. The results demonstrate that C. jejuni surface polysaccharides induce IL-6 secretion from intestinal epithelial cells via TLR-2 in a MyD88-independent manner.


2011 ◽  
Vol 13 (1) ◽  
Author(s):  
Sinéad Nic An Ultaigh ◽  
Tajvur P Saber ◽  
Jennifer McCormick ◽  
Mary Connolly ◽  
Jerome Dellacasagrande ◽  
...  

2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Hua Yao ◽  
Hong Zhang ◽  
Kai Lan ◽  
Hong Wang ◽  
Yufeng Su ◽  
...  

ABSTRACT Insights into the host-microbial virulence factor interaction, especially the immune signaling mechanisms, could provide novel prevention and treatment options for pneumococcal diseases. Streptococcus pneumoniae endopeptidase O (PepO) is a newly discovered and ubiquitously expressed pneumococcal virulence protein. A PepO-mutant strain showed impaired adherence to and invasion of host cells compared with the isogenic wild-type strain. It is still unknown whether PepO is involved in the host defense response to pneumococcal infection. Here, we demonstrated that PepO could enhance phagocytosis of Streptococcus pneumoniae and Staphylococcus aureus by peritoneal exudate macrophages (PEMs). Further studies showed that PepO stimulation upregulated the expression of microRNA-155 (miR-155) in PEMs in a time- and dose-dependent manner. PepO-induced enhanced phagocytosis was decreased in cells transfected with an inhibitor of miR-155, while it was increased in cells transfected with a mimic of miR-155. We also revealed that PepO-induced upregulation of miR-155 in PEMs was mediated by Toll-like receptor 2 (TLR2)–NF-κB signaling and that the increased expression of miR-155 downregulated expression of SHIP1. Taken together, these results indicate that PepO induces upregulation of miR-155 in PEMs, contributing to enhanced phagocytosis and host defense response to pneumococci and Staphylococcus aureus.


Sign in / Sign up

Export Citation Format

Share Document