host defense response
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 26)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Stefanie Reuter ◽  
Kristina Herold ◽  
Jana Domroes ◽  
Ralf Mrowka

Microbial pathogens carry specific structural patterns which were termed pathogenassociated molecular patterns (PAMPs). Toll-like receptors (TLRs) as key elements for the recognition of microbial pathogens are necessary for the activation of innate immune pathways. TLRs are activated by binding PAMPs of bacteria, viruses and fungi and initiate a signaling pathway resulting in the activation of transcription factors which modulate the production of various proinflammatory cytokines. It is not fully clear in detail which microbial pattern is recognized by which TLR. Here we show for the first time that TLR5 is a strong receptor for the yeast particle zymosan. We have generated stable human cell lines with combinations of TLR2 and TLR5 knock in/knock out together with stable nuclear factor kappaB (NF-κB) luciferase reporters. We found that both receptors TLR5 and TLR2 lead to an independent activation of the NF-κB pathway when simulated with zymosan. Our results demonstrate that TLR5 is a receptor for the fungal particle zymosan in addition to bacterial fragments like flagellin. Distinct cytokine patterns might suggest that TLR5 is potentially important for the differentiation in the recognition of the specific type of the foreign microorganisms and in the specific host defense response.


Author(s):  
Garima Gupta ◽  
Abhijit Das ◽  
Prameela Jha ◽  
Prabhat N. Jha

The present study was designed to compare the defense response of the host plant towards endophytic bacteria Pseudomonas aeruginosa PM389 and pathogenic bacteria Erwinia carotovora and to correlate the level of defense enzymes vis-a-vis bacterial colonization in the host. Wheat seedlings were treated with 107-108 cells ml-1 endophytic and pathogenic bacteria in the separate experimental set-up, and the level of plant defense enzyme was measured at various time intervals. Comparatively reduced level of most defense enzymes was produced in endophytic bacteria treated plants. While the endophytic bacterial population was almost constant after 24 HAI (hour after inoculation), the population of pathogenic bacteria kept fluctuating during the study period from 24 HAI. Unlike pathogenic bacteria, we observed attenuated defense response in challenged host plants towards endophytic bacteria, which helps endophytes establish inside plant. This study would be useful for understanding the mechanism of colonization and strategies of endophytes to fight against the host defense response.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katina D. Hulme ◽  
Ellesandra C. Noye ◽  
Kirsty R. Short ◽  
Larisa I. Labzin

Acute inflammation is a critical host defense response during viral infection. When dysregulated, inflammation drives immunopathology and tissue damage. Excessive, damaging inflammation is a hallmark of both pandemic influenza A virus (IAV) infections and Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infections. Chronic, low-grade inflammation is also a feature of obesity. In recent years, obesity has been recognized as a growing pandemic with significant mortality and associated costs. Obesity is also an independent risk factor for increased disease severity and death during both IAV and SARS-CoV-2 infection. This review focuses on the effect of obesity on the inflammatory response in the context of viral respiratory infections and how this leads to increased viral pathology. Here, we will review the fundamentals of inflammation, how it is initiated in IAV and SARS-CoV-2 infection and its link to disease severity. We will examine how obesity drives chronic inflammation and trained immunity and how these impact the immune response to IAV and SARS-CoV-2. Finally, we review both medical and non-medical interventions for obesity, how they impact on the inflammatory response and how they could be used to prevent disease severity in obese patients. As projections of global obesity numbers show no sign of slowing down, future pandemic preparedness will require us to consider the metabolic health of the population. Furthermore, if weight-loss alone is insufficient to reduce the risk of increased respiratory virus-related mortality, closer attention must be paid to a patient’s history of health, and new therapeutic options identified.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Naoki Yokotani ◽  
Yoshinori Hasegawa ◽  
Masaru Sato ◽  
Hideki Hirakawa ◽  
Yusuke Kouzai ◽  
...  

AbstractBacterial canker of tomato (Solanum lycopersicon) caused by the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) is an economically important disease. To understand the host defense response to Cmm infection, transcriptome sequences in tomato cotyledons were analyzed by RNA-seq. Overall, 1788 and 540 genes were upregulated and downregulated upon infection, respectively. Gene Ontology enrichment analysis revealed that genes involved in the defense response, phosphorylation, and hormone signaling were over-represented by the infection. Induced expression of defense-associated genes suggested that the tomato response to Cmm showed similarities to common plant disease responses. After infection, many resistance gene analogs (RGAs) were transcriptionally upregulated, including the expressions of some receptor-like kinases (RLKs) involved in pattern-triggered immunity. The expressions of WRKYs, NACs, HSFs, and CBP60s encoding transcription factors (TFs) reported to regulate defense-associated genes were induced after infection with Cmm. Tomato genes orthologous to Arabidopsis EDS1, EDS5/SID1, and PAD4/EDS9, which are causal genes of salicylic acid (SA)-deficient mutants, were upregulated after infection with Cmm. Furthermore, Cmm infection drastically stimulated SA accumulation in tomato cotyledons. Genes involved in the phenylalanine ammonia lyase pathway were upregulated, whereas metabolic enzyme gene expression in the isochorismate synthase pathway remained unchanged. Exogenously applied SA suppressed bacterial growth and induced the expression of WRKYs, suggesting that some Cmm-responsive genes are regulated by SA signaling, and SA signaling activation should improve tomato immunity against Cmm.


Cell Research ◽  
2021 ◽  
Author(s):  
Gang Xu ◽  
Ying Li ◽  
Shengyuan Zhang ◽  
Haoran Peng ◽  
Yunyun Wang ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the ongoing global pandemic that poses substantial challenges to public health worldwide. A subset of COVID-19 patients experience systemic inflammatory response, known as cytokine storm, which may lead to death. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important mediator of inflammation and cell death. Here, we examined the interaction of RIPK1-mediated innate immunity with SARS-CoV-2 infection. We found evidence of RIPK1 activation in human COVID-19 lung pathological samples, and cultured human lung organoids and ACE2 transgenic mice infected by SARS-CoV-2. Inhibition of RIPK1 using multiple small-molecule inhibitors reduced the viral load of SARS-CoV-2 in human lung organoids. Furthermore, therapeutic dosing of the RIPK1 inhibitor Nec-1s reduced mortality and lung viral load, and blocked the CNS manifestation of SARS-CoV-2 in ACE2 transgenic mice. Mechanistically, we found that the RNA-dependent RNA polymerase of SARS-CoV-2, NSP12, a highly conserved central component of coronaviral replication and transcription machinery, promoted the activation of RIPK1. Furthermore, NSP12 323L variant, encoded by the SARS-CoV-2 C14408T variant first detected in Lombardy, Italy, that carries a Pro323Leu amino acid substitution in NSP12, showed increased ability to activate RIPK1. Inhibition of RIPK1 downregulated the transcriptional induction of proinflammatory cytokines and host factors including ACE2 and EGFR that promote viral entry into cells. Our results suggest that SARS-CoV-2 may have an unexpected and unusual ability to hijack the RIPK1-mediated host defense response to promote its own propagation and that inhibition of RIPK1 may provide a therapeutic option for the treatment of COVID-19.


2021 ◽  
Vol 21 (9) ◽  
pp. S61-S62
Author(s):  
S. Rajasekaran ◽  
Dilip Chand Raja ◽  
Sharon Miracle Nayagam ◽  
Chitraa Tangavel ◽  
M. Raveendran ◽  
...  

2021 ◽  
Author(s):  
Shuangyuan Guo ◽  
Yanqin Zhang ◽  
Peng Zeng ◽  
Min Li ◽  
Qiong Zhang ◽  
...  

Blufensin1 (Bln1) has been identified as a negative regulator of basal defense mechanisms that is unique to the cereal grain crops barley, wheat, and rice. However, the molecular mechanisms through which Blufensin1 regulates the wheat immune response are poorly understood. In this study, we found that TaBln1 is significantly induced by Puccinia striiformis f. sp. tritici (Pst) virulent race CYR31 infection. Knockdown the expression of TaBln1 by virus-induced gene silencing reduced Pst growth and development, and enhanced the host defense response. In addition, TaBln1 was found to physically interact with TaCaM3 on the plasma membrane. Silencing TaCaM3 with virus-induced gene silencing increased fungal infection areas and sporulation and reduced wheat resistance to the Pst CYR23 and CYR31. Moreover, we found that the TaCaM3 transcription level could be induced by treatment with chitin but not flg22. Silencing TaCaM3 decreased the Ca2+ influx induced by chitin, but silencing TaBln1 increased the Ca2+ influx in vivo using a non-invasive micro-test technique. Taken together, we identified the wheat negative regulator TaBln1, which interacts with TaCaM3 to impair Ca2+ influx and inhibits plant defenses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Wei ◽  
Amany Mira ◽  
Qibin Yu ◽  
Fred G. Gmitter

Citrus Huanglongbing (HLB) is the most devastating disease of citrus, presumably caused by “Candidatus Liberibacter asiaticus” (CaLas). Although transcriptomic profiling of HLB-affected citrus plants has been studied extensively, the initial steps in pathogenesis have not been fully understood. In this study, RNA sequencing (RNA-seq) was used to compare very early transcriptional changes in the response of Valencia sweet orange (VAL) to CaLas after being fed by the vector, Diaphorina citri (Asian citrus psyllid, or ACP). The results suggest the existence of a delayed defense reaction against the infective vector in VAL, while the attack by the healthy vector prompted immediate and substantial transcriptomic changes that led to the rapid erection of active defenses. Moreover, in the presence of CaLas-infected psyllids, several downregulated differentially expressed genes (DEGs) were identified on the pathways, such as signaling, transcription factor, hormone, defense, and photosynthesis-related pathways at 1 day post-infestation (dpi). Surprisingly, a burst of DEGs (6,055) was detected at 5 dpi, including both upregulated and downregulated DEGs on the defense-related and secondary metabolic pathways, and severely downregulated DEGs on the photosynthesis-related pathways. Very interestingly, a significant number of those downregulated DEGs required ATP binding for the activation of phosphate as substrate; meanwhile, abundant highly upregulated DEGs were detected on the ATP biosynthetic and glycolytic pathways. These findings highlight the energy requirement of CaLas virulence processes. The emerging picture is that CaLas not only employs virulence strategies to subvert the host cell immunity, but the fast-replicating CaLas also actively rewires host cellular metabolic pathways to obtain the necessary energy and molecular building blocks to support virulence and the replication process. Taken together, the very early response of citrus to the CaLas, vectored by infective ACP, was evaluated for the first time, thus allowing the changes in gene expression relating to the primary mechanisms of susceptibility and host–pathogen interactions to be studied, and without the secondary effects caused by the development of complex whole plant symptoms.


2021 ◽  
Vol 32 (3) ◽  
pp. 10-20
Author(s):  
Rafaela Fernandes Zancan ◽  
José Burgos Ponce ◽  
Thiago José Dionisio ◽  
Rodrigo Cardoso de Oliveira ◽  
Rafaela Alves da Silva ◽  
...  

Abstract The host defense response to microbial challenge emerging from the root canal system leads to apical periodontitis. The aim of this study was to evaluate the expression of inflammatory cytokines and Nitric Oxide (NO) by macrophages after interaction with Enterococcus faecalis in the: plankton and dislodged biofilm mode; intact biofilm mode stimulated by calcium hydroxide (CH), CH and chlorhexidine (CHX) or Triple Antibiotic Paste (TAP). For this purpose, culture of macrophages from monocytes in human peripheral blood (N=8) were exposed to the different modes of bacteria for 24 hours. Subsequently, the cytokines, such as, Tumor Necrotic Factor- alfa (TNF-α), interleukin (IL)-1β, IL-6, IL-10; and NO were quantified by Luminex xMAP and Greiss reaction, respectively. In addition to the potential therapeutic effects of the intracanal medication, their antimicrobial activity against Enterococcus faecalis biofilm were also tested in vitro by confocal microscopy. The experiments` data were analyzed by the Kruskal-Wallis test with the Dunn post hoc test (α < 0.05). Bacteria in dislodged biofilm mode were shown to be more aggressive to the immune system than bacteria in plankton mode and negative control, inducing greater expression of NO and TNF-α. Relative to bacteria in intact biofilm mode, the weakest antimicrobial activity occurred in Group CH. In Groups CH/CHX and TAP the percentage of dead bacteria was significantly increased to the same extent. Interestingly, the biofilm itself did not induce the release of pro-inflammatory cytokines - except for NO - while the biofilm treated with TAP and CH based pastes enhanced the levels of IL-6 and TNF-α; and IL-1 β, respectively. In contrast, the levels of a potent anti-inflammatory (IL-10) were increased in Group TAP.


Sign in / Sign up

Export Citation Format

Share Document