scholarly journals Regulation of the Cell Surface Expression and Function of Angiotensin II Type 1 Receptor by Rab1-mediated Endoplasmic Reticulum-to-Golgi Transport in Cardiac Myocytes

2004 ◽  
Vol 279 (39) ◽  
pp. 41077-41084 ◽  
Author(s):  
Catalin M. Filipeanu ◽  
Fuguo Zhou ◽  
William C. Claycomb ◽  
Guangyu Wu
2005 ◽  
Vol 280 (23) ◽  
pp. 22502-22507 ◽  
Author(s):  
Aixin Cheng ◽  
Neil A. McDonald ◽  
Christopher N. Connolly

RIC-3 has been identified as a molecule essential for the recruitment of functional nicotinic acetylcholine receptors composed of α7, but it exhibits inhibitory effects on α4β2 or α3β4 receptors. In this study, we investigated the role of RIC-3 in the recruitment of 5-hydroxytryptamine type 3A (5-HT3A) receptors to the cell surface. Although RIC-3 is not essential for the surface transport of 5-HT3A receptors, we found that its presence enhances both receptor transport and function in a concentration-dependent manner. RIC-3 is localized to the endoplasmic reticulum, as evidenced by co-localization with the chaperone molecule, binding protein (BiP). RIC-3 is not detected at significant levels on the cell surface when expressed alone or in the presence of 5-HT3A. RIC-3 and 5-HT3A show a low level interaction that is transient (<4 h). That RIC-3 can interact with an endoplasmic reticulum-retained 5-HT3A construct, combined with the transient interaction observed and lack of significant surface-expressed RIC-3, suggests that RIC-3 may play a role in 5-HT3A receptor folding, assembly, or transport to the cell surface.


1990 ◽  
Vol 64 (10) ◽  
pp. 4776-4783 ◽  
Author(s):  
M E Andrew ◽  
D B Boyle ◽  
P L Whitfeld ◽  
L J Lockett ◽  
I D Anthony ◽  
...  

2012 ◽  
Vol 3 ◽  
Author(s):  
Kinga K. Hosszu ◽  
Alisa Valentino ◽  
Yan Ji ◽  
Mara Matkovic ◽  
Lina Pednekar ◽  
...  

2016 ◽  
Vol 292 (4) ◽  
pp. 1524-1534 ◽  
Author(s):  
Stine Jørgensen ◽  
Christian Theil Have ◽  
Christina Rye Underwood ◽  
Lars Dan Johansen ◽  
Petrine Wellendorph ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0132026 ◽  
Author(s):  
Fausto Rojas ◽  
Maria E. Hernandez ◽  
Milagros Silva ◽  
Lihua Li ◽  
Subbaya Subramanian ◽  
...  

2006 ◽  
Vol 401 (1) ◽  
pp. 185-195 ◽  
Author(s):  
Chiharu Sogawa ◽  
Kei Kumagai ◽  
Norio Sogawa ◽  
Katsuya Morita ◽  
Toshihiro Dohi ◽  
...  

The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl−-dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.


1996 ◽  
Vol 313 (2) ◽  
pp. 391-399 ◽  
Author(s):  
Drorit NEUMANN ◽  
Ming YUK HUAM ◽  
Harvey F. LODISH ◽  
Gerardo Z. LEDERKREMER

The erythropoietin receptor (EPO-R), a type 1 membrane glycoprotein, is degraded mainly in the lysosomes or endosomes, whereas the asialoglycoprotein receptor (ASGP-R) H2a subunit, a type 2 membrane glycoprotein, is degraded exclusively in the endoplasmic reticulum. The present study describes compounds that inhibit the intracellular degradation of these receptors in an efficient manner. However, the levels of cell-surface expression and secretion of their soluble exoplasmic domains were not enhanced to the same extent. The calpain inhibitors N-acetyl-leucyl-leucyl-norleucinal(ALLN) and N-acetyl-leucyl-leucyl-methional (ALLM) inhibited EPO-R degradation profoundly. After 3 h of chase using Ba/F3 cells and NIH 3T3 fibroblasts expressing the EPO-R, virtually all of the receptor molecules were degraded, whereas 80% of the pulse-labelled receptor remained intact in the presence of the inhibitor. EPO-R cell-surface expression was elevated 1.5-fold after 1 h of incubation with ALLN. In the absence of protein synthesis, ALLN caused the accumulation of non-degraded EPO-R molecules in endosomes and lysosomes, as determined by double immunofluorescence labelling of NIH 3T3 cells expressing EPO-Rs. In Ba/F3 cells expressing a soluble EPO-R, ALLN treatment increased secretion of the soluble exoplasmic domain of the EPO-R 2-5-fold. Similarly, in NIH 3T3 cells singly transfected with the ASGP-R H2a subunit cDNA, ALLN inhibited degradation of the ASGP-R H2a subunit precursor, as well as the degradation of the 35 kDa proteolytic fragment corresponding to the receptor ectodomain, by 3-6-fold. However, accumulation of secreted proteolytic fragment in the medium was augmented in the presence of ALLN by only 1.75-fold. In cells expressing the G78R mutant of the ASGP-R H2a subunit, which is not cleaved to the 35 kDa fragment [Yuk and Lodish (1993) J. Cell Biol. 123,1735-1749], degradation of the precursor was inhibited. Overall, our data suggest the involvement of cysteine proteinases located in the endoplasmic reticulum, as well as in post-Golgi compartments, in degradation of the EPO-R and the ASGP-R H2a subunit. The much lower effect of the inhibitory compounds on cell-surface and secreted forms of the EPO-R and ASGP-R H2a subunit illustrates the complexity and the tight regulation of the cellular localization and stability of membrane proteins.


Sign in / Sign up

Export Citation Format

Share Document