scholarly journals Design of a Long Acting Peptide Functioning as Both a Glucagon-like Peptide-1 Receptor Agonist and a Glucagon Receptor Antagonist

2006 ◽  
Vol 281 (18) ◽  
pp. 12506-12515 ◽  
Author(s):  
Clark Q. Pan ◽  
Joanne M. Buxton ◽  
Stephanie L. Yung ◽  
Irene Tom ◽  
Ling Yang ◽  
...  
2007 ◽  
Vol 192 (2) ◽  
pp. 371-380 ◽  
Author(s):  
Thomas H Claus ◽  
Clark Q Pan ◽  
Joanne M Buxton ◽  
Ling Yang ◽  
Jennifer C Reynolds ◽  
...  

Type 2 diabetes is characterized by reduced insulin secretion from the pancreas and overproduction of glucose by the liver. Glucagon-like peptide-1 (GLP-1) promotes glucose-dependent insulin secretion from the pancreas, while glucagon promotes glucose output from the liver. Taking advantage of the homology between GLP-1 and glucagon, a GLP-1/glucagon hybrid peptide, dual-acting peptide for diabetes (DAPD), was identified with combined GLP-1 receptor agonist and glucagon receptor antagonist activity. To overcome its short plasma half-life DAPD was PEGylated, resulting in dramatically prolonged activity in vivo. PEGylated DAPD (PEG-DAPD) increases insulin and decreases glucose in a glucose tolerance test, evidence of GLP-1 receptor agonism. It also reduces blood glucose following a glucagon challenge and elevates fasting glucagon levels in mice, evidence of glucagon receptor antagonism. The PEG-DAPD effects on glucose tolerance are also observed in the presence of the GLP-1 antagonist peptide, exendin(9–39). An antidiabetic effect of PEG-DAPD is observed in db/db mice. Furthermore, PEGylation of DAPD eliminates the inhibition of gastrointestinal motility observed with GLP-1 and its analogues. Thus, PEG-DAPD has the potential to be developed as a novel dual-acting peptide to treat type 2 diabetes, with prolonged in vivo activity, and without the GI side-effects.


2018 ◽  
Vol 315 (4) ◽  
pp. R595-R608 ◽  
Author(s):  
Jacob D. Brown ◽  
Danielle McAnally ◽  
Jennifer E. Ayala ◽  
Melissa A. Burmeister ◽  
Camilo Morfa ◽  
...  

Long-acting glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists (GLP-1RA), such as exendin-4 (Ex4), promote weight loss. On the basis of a newly discovered interaction between GLP-1 and oleoylethanolamide (OEA), we tested whether OEA enhances GLP-1RA-mediated anorectic signaling and weight loss. We analyzed the effect of GLP-1+OEA and Ex4+OEA on canonical GLP-1R signaling and other proteins/pathways that contribute to the hypophagic action of GLP-1RA (AMPK, Akt, mTOR, and glycolysis). We demonstrate that OEA enhances canonical GLP-1R signaling when combined with GLP-1 but not with Ex4. GLP-1 and Ex4 promote phosphorylation of mTOR pathway components, but OEA does not enhance this effect. OEA synergistically enhanced GLP-1- and Ex4-stimulated glycolysis but did not augment the hypophagic action of GLP-1 or Ex4 in lean or diet-induced obese (DIO) mice. However, the combination of Ex4+OEA promoted greater weight loss in DIO mice than Ex4 or OEA alone during a 7-day treatment. This was due in part to transient hypophagia and increased energy expenditure, phenotypes also observed in Ex4-treated DIO mice. Thus, OEA augments specific GLP-1RA-stimulated signaling but appears to work in parallel with Ex4 to promote weight loss in DIO mice. Elucidating cooperative mechanisms underlying Ex4+OEA-mediated weight loss could, therefore, be leveraged toward more effective obesity therapies.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Koji Yamamoto ◽  
Masatoshi Amako ◽  
Yoritsuna Yamamoto ◽  
Toyokazu Tsuchihara ◽  
Hitoshi Nukada ◽  
...  

Glucagon-like peptide-1 (GLP-1) is glucose-dependent insulinotropic hormone secreted from enteroendocrine L cells. Its long-acting analogue, exendin-4, is equipotent to GLP-1 and is used to treat type 2 diabetes mellitus. In addition, exendin-4 has effects on the central and peripheral nervous system. In this study, we administered repeated intraperitoneal (i.p.) injections of exendin-4 to examine whether exendin-4 is able to facilitate the recovery after the crush nerve injury. Exendin-4 injection was started immediately after crush injury and was repeated every day for subsequent 14 days. Rats subjected to sciatic nerve crush exhibited marked functional loss, electrophysiological dysfunction, and atrophy of the tibialis anterior muscle (TA). All these changes, except for the atrophy of TA, were improved significantly by the administration of exendin-4. Functional, electrophysiological, and morphological parameters indicated significant enhancement of nerve regeneration 4 weeks after nerve crush. These results suggest that exendin-4 is feasible for clinical application to treat peripheral nerve injury.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1097-P ◽  
Author(s):  
STEFANO DEL PRATO ◽  
IN YOUNG CHOI ◽  
JAHOON KANG ◽  
MICHAEL E. TRAUTMANN ◽  
KUN-HO YOON ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document