scholarly journals Protein Kinase D-dependent Phosphorylation and Nuclear Export of Histone Deacetylase 5 Mediates Vascular Endothelial Growth Factor-induced Gene Expression and Angiogenesis

2008 ◽  
Vol 283 (21) ◽  
pp. 14590-14599 ◽  
Author(s):  
Chang Hoon Ha ◽  
Weiye Wang ◽  
Bong Sook Jhun ◽  
Chelsea Wong ◽  
Angelika Hausser ◽  
...  
2004 ◽  
Vol 286 (5) ◽  
pp. C1170-C1176 ◽  
Author(s):  
M. Ángeles Castilla ◽  
Fernando Neria ◽  
Guadalupe Renedo ◽  
Daniel S. Pereira ◽  
Francisco R. González-Pacheco ◽  
...  

Proangiogenic, proliferative effects of tumors have been extensively characterized in subconfluent endothelial cells (EC), but results in confluent, contact-inhibited EC are critically lacking. The present study examined the effect of tumor-conditioned medium (CM) of the malignant osteoblastic cell line MG63 on monolayer, quiescent bovine aorta EC. MG63-CM and MG63-CM + CoCl2 significantly increased EC survival in serum-starved conditions, without inducing EC proliferation. Furthermore, MG63-CM and MG63-CM + CoCl2, both containing high amounts of vascular endothelial growth factor (VEGF), induced relevant phenotypic changes in EC (all P < 0.01) involving increase of nucleoli/chromatin condensations, nucleus-to-cytosol ratio, capillary-like vacuolated structures, vessel-like acellular areas, migration through Matrigel, growth advantage in reseeding, and factor VIII content. All these actions were significantly inhibited by VEGF and VEGF receptor (VEGFR2) blockade. Of particular importance, a set of similar effects were detected in a human microvascular endothelial cell line (HMEC). With regard to gene expression, incubation with MG63-CM abolished endogenous VEGF mRNA and protein but induced a clear-cut increase in VEGFR2 mRNA expression in EC. In terms of mechanism, MG63-CM activates protein kinase B (PKB)/Akt, p44/p42-mitogen-activated protein kinase (MAPK)-mediated pathways, as suggested by both inhibition and phosphorylation experiments. In conclusion, tumor cells activate confluent, quiescent EC, promoting survival, phenotypic, and gene expression changes. Of importance, VEGF antagonism converts MG63-CM from protective to EC-damaging effects.


2009 ◽  
Vol 296 (4) ◽  
pp. C821-C827 ◽  
Author(s):  
Qin Hao ◽  
Linping Wang ◽  
Hua Tang

Emerging evidence indicates that vascular endothelial growth factor (VEGF) plays a critical role in host inflammatory responses in several disease states, including atherosclerosis, sepsis, and rheumatoid arthritis. In this study, we determined the effect of VEGF on endothelial induction of proinflammatory cytokines and investigated the responsible signal pathways. By using a cytokine antibody array that detects the end point protein products released from endothelial cells (ECs), we found that VEGF, via VEGF receptor 2 (VEGFR2), predominantly induced the production of proinflammatory cytokine interleukin (IL)-6 and CXC chemokines IL-8 and growth-related oncogene-α (GRO-α) in ECs but not in leukocytes among 36 cytokines in the array. The production of these inflammatory cytokines by VEGF was much stronger than the induction of cell adhesion molecule in ECs. We further found that the cytokine production by VEGF was essentially mediated by the Gö-6976-sensitive protein kinase D (PKD) family kinases. Importantly, the VEGF-induced production of IL-6, IL-8, and GRO-α was inhibited ∼70%, 40%, or 37% by PKD1 silencing (more than 90% knockdown) with three small interference RNAs that target different PKD1 regions. Moreover, silencing PKD2 downregulated VEGFR2 and markedly inhibited the cytokine production by VEGF in ECs. Our results indicate that VEGF, via VEGFR2-PKD1 axis, induces the production of proinflammatory cytokine IL-6, IL-8, and GRO-α in ECs but not in leukocytes, which may offer new insights into the mechanism of the proinflammatory activity of VEGF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iman S. Naga ◽  
Amel Abdel Fattah Kamel ◽  
Said Ahmed Ooda ◽  
Hadeer Muhammad Fath Elbab ◽  
Rania Mohamed El-Sharkawy

Abstract Background Hepatitis C virus infection is a global health challenge with Egypt being one of the highly affected countries. IL-10 has been suggested as a suitable marker to assess necroinflammation and to monitor the progression of liver damage. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor playing a central role in many physiological as well as pathological processes. Several factors can be predictive of the response to treatment and achievement of SVR; some of which are host-related, and others are virus-related. The gene expression of IL-10 and VEGF have multiple effects for treatment response. The aim of the present work was to study the effect of treatment with directly acting agents (DAA) on the expression of VEGF and IL-10 genes in chronic hepatitis C virus-infected Egyptian genotype-4a patients. Twenty-five HCV subjects where evaluated for IL-10 and VEGF gene expression before and after treatment with DAA. Results IL-10 expression was downregulated in 92% of the cases. VEGF expression was heterogeneous showing spreading of values along a wide range with 64% of the cases being downregulated. Conclusion DAAs do not completely reverse the immunological imprints established upon chronic HCV infection.


2008 ◽  
Vol 197 (2) ◽  
pp. 309-314 ◽  
Author(s):  
Angélica Morales ◽  
Sumiko Morimoto ◽  
Lorenza Díaz ◽  
Guillermo Robles ◽  
Vicente Díaz-Sánchez

Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an endothelial cell mitogen, expressed essentially in steroidogenic cells. Recently, the expression of EG-VEGF in normal human pancreas and pancreatic adenocarcinoma has been demonstrated. Epidemiologically, pancreatic carcinogenesis is more frequent in males than females, and given that androgen receptors and testosterone biotransformation have been described in pancreas, we hypothesized that testosterone could participate in the regulation of EG-VEGF expression. In this study, we investigated the regulation of EG-VEGF gene expression by testosterone in normal rat pancreatic tissue and rat insulinoma cells (RINm5F). Total RNA was extracted from rat pancreas and cultured cells. Gene expression was studied by real-time PCR and protein detection by immunohistochemistry. Serum testosterone was quantified by RIA. Results showed that EG-VEGF is expressed predominantly in pancreatic islets and vascular endothelium, as well as in RINm5F cells. EG-VEGF gene expression was lower in the pancreas of rats with higher testosterone serum levels. A similar effect that was reverted by flutamide was observed in testosterone-treated RINm5F cells. In summary, testosterone down-regulated EG-VEGF gene expression in rat pancreatic tissue and RINm5F cells. This effect could be mediated by the androgen receptor. To our knowledge, this is the first time that a direct effect of testosterone on EG-VEGF gene expression in rat pancreas and RINm5F cells is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document