scholarly journals ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme

2020 ◽  
pp. jbc.RA120.015029
Author(s):  
Inga Jarmoskaite ◽  
Pilar Tijerina ◽  
Rick Russell

DEAD-box helicase proteins perform ATP-dependent rearrangements of structured RNAs throughout RNA biology. Short RNA helices are unwound in a single ATPase cycle, but the ATP requirement for more complex RNA structural rearrangements is unknown. Here we measure the amount of ATP used for native refolding of a misfolded group I intron ribozyme by CYT-19, a Neurospora crassa DEAD-box protein that functions as a general chaperone for mitochondrial group I introns. By comparing the rates of ATP hydrolysis and ribozyme refolding, we find that several hundred ATP molecules are hydrolyzed during refolding of each ribozyme molecule. After subtracting non-productive ATP hydrolysis that occurs in the absence of ribozyme refolding, we find that approximately 100 ATPs are hydrolyzed per refolded RNA as a consequence of interactions specific to the misfolded ribozyme. This value is insensitive to changes in ATP and CYT-19 concentration and decreases with decreasing ribozyme stability. Because of earlier findings that ~90% of global ribozyme unfolding cycles lead back to the kinetically preferred misfolded conformation and are not observed, we estimate that each global unfolding cycle consumes ~10 ATPs. Our results indicate that CYT-19 functions as a general RNA chaperone by using a stochastic, energy-intensive mechanism to promote RNA unfolding and refolding, suggesting an evolutionary convergence with protein chaperones.

Cell ◽  
2002 ◽  
Vol 109 (6) ◽  
pp. 769-779 ◽  
Author(s):  
Sabine Mohr ◽  
John M. Stryker ◽  
Alan M. Lambowitz

Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 97-108 ◽  
Author(s):  
K F Dobinson ◽  
M Henderson ◽  
R L Kelley ◽  
R A Collins ◽  
A M Lambowitz

Abstract The nuclear cyt-4 mutants of Neurospora crassa have been shown previously to be defective in splicing the group I intron in the mitochondrial large rRNA gene and in 3' end synthesis of the mitochondrial large rRNA. Here, Northern hybridization experiments show that the cyt-4-1 mutant has alterations in a number of mitochondrial RNA processing pathways, including those for cob, coI, coII and ATPase 6 mRNAs, as well as mitochondrial tRNAs. Defects in these pathways include inhibition of 5' and 3' end processing, accumulation of aberrant RNA species, and inhibition of splicing of both group I introns in the cob gene. The various defects in mitochondrial RNA synthesis in the cyt-4-1 mutant cannot be accounted for by deficiency of mitochondrial protein synthesis or energy metabolism, and they suggest that the cyt-4-1 mutant is defective in a component or components required for processing and/or turnover of a number of different mitochondrial RNAs. Defective splicing of the mitochondrial large rRNA intron in the cyt-4-1 mutant may be a secondary effect of failure to synthesize pre-rRNAs having the correct 3' end. However, a similar explanation cannot be invoked to account for defective splicing of the cob pre-mRNA introns, and the cyt-4-1 mutation may directly affect splicing of these introns.


2009 ◽  
Vol 191 (12) ◽  
pp. 4044-4046 ◽  
Author(s):  
Rahul Raghavan ◽  
Linda D. Hicks ◽  
Michael F. Minnick

ABSTRACT Cbu.L1917, a group I intron present in the 23S rRNA gene of Coxiella burnetii, possesses a unique 3′-terminal adenine in place of a conserved guanine. Here, we show that, unlike all other group I introns, Cbu.L1917 utilizes a different cofactor for each splicing step and has a decreased self-splicing rate in vitro.


1989 ◽  
Vol 9 (5) ◽  
pp. 2089-2104
Author(s):  
A L Majumder ◽  
R A Akins ◽  
J G Wilkinson ◽  
R L Kelley ◽  
A J Snook ◽  
...  

We reported previously that mitochondrial tyrosyl-tRNA synthetase, which is encoded by the nuclear gene cyt-18 in Neurospora crassa, functions in splicing several group I introns in N. crassa mitochondria (R. A. Akins and A. M. Lambowitz, Cell 50:331-345, 1987). Two mutants in the cyt-18 gene (cyt-18-1 and cyt-18-2) are defective in both mitochondrial protein synthesis and splicing, and an activity that splices the mitochondrial large rRNA intron copurifies with a component of mitochondrial tyrosyl-tRNA synthetase. Here, we used antibodies against different trpE-cyt-18 fusion proteins to identify the cyt-18 gene product as a basic protein having an apparent molecular mass of 67 kilodaltons (kDa). Both the cyt-18-1 and cyt-18-2 mutants contain relatively high amounts of inactive cyt-18 protein detected immunochemically. Biochemical experiments show that the 67-kDa cyt-18 protein copurifies with splicing and synthetase activity through a number of different column chromatographic procedures. Some fractions having splicing activity contain only one or two prominent polypeptide bands, and the cyt-18 protein is among the few, if not only, major bands in common between the different fractions that have splicing activity. Phosphocellulose columns resolve three different forms or complexes of the cyt-18 protein that have splicing or synthetase activity or both. Gel filtration experiments show that splicing activity has a relatively small molecular mass (peak at 150 kDa with activity trailing to lower molecular masses) and could correspond simply to dimers or monomers, or both, of the cyt-18 protein. Finally, antibodies against different segments of the cyt-18 protein inhibit splicing of the large rRNA intron in vitro. Our results indicate that both splicing and tyrosyl-tRNA synthetase activity are associated with the same 67-kDa protein encoded by the cyt-18 gene. This protein is a key constituent of splicing activity; it functions directly in splicing, and few, if any, additional components are required for splicing the large rRNA intron.


1989 ◽  
Vol 9 (5) ◽  
pp. 2089-2104 ◽  
Author(s):  
A L Majumder ◽  
R A Akins ◽  
J G Wilkinson ◽  
R L Kelley ◽  
A J Snook ◽  
...  

We reported previously that mitochondrial tyrosyl-tRNA synthetase, which is encoded by the nuclear gene cyt-18 in Neurospora crassa, functions in splicing several group I introns in N. crassa mitochondria (R. A. Akins and A. M. Lambowitz, Cell 50:331-345, 1987). Two mutants in the cyt-18 gene (cyt-18-1 and cyt-18-2) are defective in both mitochondrial protein synthesis and splicing, and an activity that splices the mitochondrial large rRNA intron copurifies with a component of mitochondrial tyrosyl-tRNA synthetase. Here, we used antibodies against different trpE-cyt-18 fusion proteins to identify the cyt-18 gene product as a basic protein having an apparent molecular mass of 67 kilodaltons (kDa). Both the cyt-18-1 and cyt-18-2 mutants contain relatively high amounts of inactive cyt-18 protein detected immunochemically. Biochemical experiments show that the 67-kDa cyt-18 protein copurifies with splicing and synthetase activity through a number of different column chromatographic procedures. Some fractions having splicing activity contain only one or two prominent polypeptide bands, and the cyt-18 protein is among the few, if not only, major bands in common between the different fractions that have splicing activity. Phosphocellulose columns resolve three different forms or complexes of the cyt-18 protein that have splicing or synthetase activity or both. Gel filtration experiments show that splicing activity has a relatively small molecular mass (peak at 150 kDa with activity trailing to lower molecular masses) and could correspond simply to dimers or monomers, or both, of the cyt-18 protein. Finally, antibodies against different segments of the cyt-18 protein inhibit splicing of the large rRNA intron in vitro. Our results indicate that both splicing and tyrosyl-tRNA synthetase activity are associated with the same 67-kDa protein encoded by the cyt-18 gene. This protein is a key constituent of splicing activity; it functions directly in splicing, and few, if any, additional components are required for splicing the large rRNA intron.


2004 ◽  
Vol 186 (23) ◽  
pp. 8153-8155 ◽  
Author(s):  
Richard P. Bonocora ◽  
David A. Shub

ABSTRACT Group I introns are inserted into genes of a wide variety of bacteriophages of gram-positive bacteria. However, among the phages of enteric and other gram-negative proteobacteria, introns have been encountered only in phage T4 and several of its close relatives. Here we report the insertion of a self-splicing group I intron in the coding sequence of the DNA polymerase genes of ΦI and W31, phages that are closely related to T7. The introns belong to subgroup IA2 and both contain an open reading frame, inserted into structural element P6a, encoding a protein belonging to the HNH family of homing endonucleases. The introns splice efficiently in vivo and self-splice in vitro under mild conditions of ionic strength and temperature. We conclude that there is no barrier for maintenance of group I introns in phages of proteobacteria.


2014 ◽  
Vol 111 (29) ◽  
pp. E2928-E2936 ◽  
Author(s):  
I. Jarmoskaite ◽  
H. Bhaskaran ◽  
S. Seifert ◽  
R. Russell
Keyword(s):  
Dead Box ◽  

Sign in / Sign up

Export Citation Format

Share Document