scholarly journals [4Fe-4S] cluster trafficking mediated by Arabidopsis mitochondrial ISCA and NFU proteins

2020 ◽  
Vol 295 (52) ◽  
pp. 18367-18378 ◽  
Author(s):  
Tamanna Azam ◽  
Jonathan Przybyla-Toscano ◽  
Florence Vignols ◽  
Jérémy Couturier ◽  
Nicolas Rouhier ◽  
...  

Numerous iron-sulfur (Fe-S) proteins with diverse functions are present in the matrix and respiratory chain complexes of mitochondria. Although [4Fe-4S] clusters are the most common type of Fe-S cluster in mitochondria, the molecular mechanism of [4Fe-4S] cluster assembly and insertion into target proteins by the mitochondrial iron-sulfur cluster (ISC) maturation system is not well-understood. Here we report a detailed characterization of two late-acting Fe-S cluster-carrier proteins from Arabidopsis thaliana, NFU4 and NFU5. Yeast two-hybrid and bimolecular fluorescence complementation studies demonstrated interaction of both the NFU4 and NFU5 proteins with the ISCA class of Fe-S carrier proteins. Recombinant NFU4 and NFU5 were purified as apo-proteins after expression in Escherichia coli. In vitro Fe-S cluster reconstitution led to the insertion of one [4Fe-4S]2+ cluster per homodimer as determined by UV-visible absorption/CD, resonance Raman and EPR spectroscopy, and analytical studies. Cluster transfer reactions, monitored by UV-visible absorption and CD spectroscopy, showed that a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer is effective in transferring [4Fe-4S]2+ clusters to both NFU4 and NFU5 with negligible back reaction. In addition, [4Fe-4S]2+ cluster-bound ISCA1a/2, NFU4, and NFU5 were all found to be effective [4Fe-4S]2+ cluster donors for maturation of the mitochondrial apo-aconitase 2 as assessed by enzyme activity measurements. The results demonstrate rapid, unidirectional, and quantitative [4Fe-4S]2+ cluster transfer from ISCA1a/2 to NFU4 or NFU5 that further delineates their respective positions in the plant ISC machinery and their contributions to the maturation of client [4Fe-4S] cluster-containing proteins.

2020 ◽  
Vol 21 (23) ◽  
pp. 9237
Author(s):  
Tamanna Azam ◽  
Jonathan Przybyla-Toscano ◽  
Florence Vignols ◽  
Jérémy Couturier ◽  
Nicolas Rouhier ◽  
...  

Iron-sulfur (Fe-S) proteins are crucial for many cellular functions, particularly those involving electron transfer and metabolic reactions. An essential monothiol glutaredoxin GRXS15 plays a key role in the maturation of plant mitochondrial Fe-S proteins. However, its specific molecular function is not clear, and may be different from that of the better characterized yeast and human orthologs, based on known properties. Hence, we report here a detailed characterization of the interactions between Arabidopsis thaliana GRXS15 and ISCA proteins using both in vivo and in vitro approaches. Yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that GRXS15 interacts with each of the three plant mitochondrial ISCA1a/1b/2 proteins. UV-visible absorption/CD and resonance Raman spectroscopy demonstrated that coexpression of ISCA1a and ISCA2 resulted in samples with one [2Fe-2S]2+ cluster per ISCA1a/2 heterodimer, but cluster reconstitution using as-purified [2Fe-2S]-ISCA1a/2 resulted in a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer. Cluster transfer reactions monitored by UV-visible absorption and CD spectroscopy demonstrated that [2Fe-2S]-GRXS15 mediates [2Fe-2S]2+ cluster assembly on mitochondrial ferredoxin and [4Fe-4S]2+ cluster assembly on the ISCA1a/2 heterodimer in the presence of excess glutathione. This suggests that ISCA1a/2 is an assembler of [4Fe-4S]2+ clusters, via two-electron reductive coupling of two [2Fe-2S]2+ clusters. Overall, the results provide new insights into the roles of GRXS15 and ISCA1a/2 in effecting [2Fe-2S]2+ to [4Fe-4S]2+ cluster conversions for the maturation of client [4Fe-4S] cluster-containing proteins in plants.


Inorganics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 43
Author(s):  
Ralf R. Mendel ◽  
Thomas W. Hercher ◽  
Arkadiusz Zupok ◽  
Muhammad A. Hasnat ◽  
Silke Leimkühler

Iron-sulfur (Fe-S) clusters are essential protein cofactors. In enzymes, they are present either in the rhombic [2Fe-2S] or the cubic [4Fe-4S] form, where they are involved in catalysis and electron transfer and in the biosynthesis of metal-containing prosthetic groups like the molybdenum cofactor (Moco). Here, we give an overview of the assembly of Fe-S clusters in bacteria and humans and present their connection to the Moco biosynthesis pathway. In all organisms, Fe-S cluster assembly starts with the abstraction of sulfur from l-cysteine and its transfer to a scaffold protein. After formation, Fe-S clusters are transferred to carrier proteins that insert them into recipient apo-proteins. In eukaryotes like humans and plants, Fe-S cluster assembly takes place both in mitochondria and in the cytosol. Both Moco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. Moco is a tricyclic pterin compound with molybdenum coordinated through its unique dithiolene group. Moco biosynthesis begins in the mitochondria in a Fe-S cluster dependent step involving radical/S-adenosylmethionine (SAM) chemistry. An intermediate is transferred to the cytosol where the dithiolene group is formed, to which molybdenum is finally added. Further connections between Fe-S cluster assembly and Moco biosynthesis are discussed in detail.


2001 ◽  
Vol 183 (21) ◽  
pp. 6225-6233 ◽  
Author(s):  
Tong Zhao ◽  
Francisco Cruz ◽  
James G. Ferry

ABSTRACT A total of 35 homologs of the iron-sulfur flavoprotein (Isf) fromMethanosarcina thermophila were identified in databases. All three domains were represented, and multiple homologs were present in several species. An unusually compact cysteine motif ligating the 4Fe-4S cluster in Isf is conserved in all of the homologs except two, in which either an aspartate or a histidine has replaced the second cysteine in the motif. A phylogenetic analysis of Isf homologs identified four subgroups, two of which were supported by bootstrap data. Three homologs from metabolically and phylogenetically diverse species in the Bacteria and Archaea domains (Af3 from Archaeoglobus fulgidus, Cd1 fromClostridium difficile, and Mj2 from Methanococcus jannaschii) were overproduced in Escherichia coli. Each homolog purified as a homodimer, and the UV-visible absorption spectra were nearly identical to that of Isf. After reconstitution with iron, sulfide, and flavin mononucleotide (FMN) the homologs contained six to eight nonheme iron atoms and 1.6 to 1.7 FMN molecules per dimer, suggesting that two 4Fe-4S or 3Fe-4S clusters and two FMN cofactors were bound to each dimer, which is consistent with Isf data. Homologs Af3 and Mj2 were reduced by CO in reactions catalyzed by cell extract of acetate-grown M. thermophila, but Cd1 was not. Homologs Af3 and Mj2 were reduced by CO in reactions catalyzed by A. fulgidus and M. jannaschii cell extracts. Cell extract of Clostridium thermoaceticum catalyzed CO reduction of Cd1. Our database sequence analyses and biochemical characterizations indicate that Isf is the prototype of a family of iron-sulfur flavoproteins that occur in members of all three domains.


2013 ◽  
Vol 288 (20) ◽  
pp. 14200-14211 ◽  
Author(s):  
Sylvain Boutigny ◽  
Avneesh Saini ◽  
Edward E. K. Baidoo ◽  
Natasha Yeung ◽  
Jay D. Keasling ◽  
...  

The biosynthesis of iron sulfur (FeS) clusters, their trafficking from initial assembly on scaffold proteins via carrier proteins to final incorporation into FeS apoproteins, is a highly coordinated process enabled by multiprotein systems encoded in iscRSUAhscBAfdx and sufABCDSE operons in Escherichia coli. Although these systems are believed to encode all factors required for initial cluster assembly and transfer to FeS carrier proteins, accessory factors such as monothiol glutaredoxin, GrxD, and the FeS carrier protein NfuA are located outside of these defined systems. These factors have been suggested to function both as shuttle proteins acting to transfer clusters between scaffold and carrier proteins and in the final stages of FeS protein assembly by transferring clusters to client FeS apoproteins. Here we implicate both of these factors in client protein interactions. We demonstrate specific interactions between GrxD, NfuA, and the methylthiolase MiaB, a radical S-adenosyl-l-methionine-dependent enzyme involved in the maturation of a subset of tRNAs. We show that GrxD and NfuA physically interact with MiaB with affinities compatible with an in vivo function. We furthermore demonstrate that NfuA is able to transfer its cluster in vitro to MiaB, whereas GrxD is unable to do so. The relevance of these interactions was demonstrated by linking the activity of MiaB with GrxD and NfuA in vivo. We observe a severe defect in in vivo MiaB activity in cells lacking both GrxD and NfuA, suggesting that these proteins could play complementary roles in maturation and repair of MiaB.


2021 ◽  
Author(s):  
Jonathan Przybyla-Toscano ◽  
Andrew E Maclean ◽  
Marina Franceschetti ◽  
Daniela Liebsch ◽  
Florence Vignols ◽  
...  

Plants have evolutionarily conserved NFU-domain proteins that are targeted to plastids or mitochondria. The 'plastid-type' NFU1, NFU2 and NFU3 in Arabidopsis thaliana play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here we confirm that NFU4 and NFU5 are targeted to the mitochondria. The proteins are constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of the proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes and aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth was improved by elevated CO2. In addition, pyruvate, 2-oxoglutarate and branched-chain amino acids accumulated in the nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, in providing Fe-S clusters to lipoyl synthase.


2008 ◽  
Vol 191 (5) ◽  
pp. 1490-1497 ◽  
Author(s):  
Jeffrey M. Boyd ◽  
Randy M. Drevland ◽  
Diana M. Downs ◽  
David E. Graham

ABSTRACT Iron-sulfur clusters may have been the earliest catalytic cofactors on earth, and most modern organisms use them extensively. Although members of the Archaea produce numerous iron-sulfur proteins, the major cluster assembly proteins found in the Bacteria and Eukarya are not universally conserved in archaea. Free-living archaea do have homologs of the bacterial apbC and eukaryotic NBP35 genes that encode iron-sulfur cluster carrier proteins. This study exploits the genetic system of Salmonella enterica to examine the in vivo functionality of apbC/NBP35 homologs from three archaea: Methanococcus maripaludis, Methanocaldococcus jannaschii, and Sulfolobus solfataricus. All three archaeal homologs could correct the tricarballylate growth defect of an S. enterica apbC mutant. Additional genetic studies showed that the conserved Walker box serine and the Cys-X-X-Cys motif of the M. maripaludis MMP0704 protein were both required for function in vivo but that the amino-terminal ferredoxin domain was not. MMP0704 protein and an MMP0704 variant protein missing the N-terminal ferredoxin domain were purified, and the Fe-S clusters were chemically reconstituted. Both proteins bound equimolar concentrations of Fe and S and had UV-visible spectra similar to those of known [4Fe-4S] cluster-containing proteins. This family of dimeric iron-sulfur carrier proteins evolved before the archaeal and eukaryal lineages diverged, representing an ancient mode of cluster assembly.


2020 ◽  
Vol 295 (6) ◽  
pp. 1727-1742 ◽  
Author(s):  
Mélanie Roland ◽  
Jonathan Przybyla-Toscano ◽  
Florence Vignols ◽  
Nathalie Berger ◽  
Tamanna Azam ◽  
...  

Proteins incorporating iron–sulfur (Fe-S) co-factors are required for a plethora of metabolic processes. Their maturation depends on three Fe-S cluster assembly machineries in plants, located in the cytosol, mitochondria, and chloroplasts. After de novo formation on scaffold proteins, transfer proteins load Fe-S clusters onto client proteins. Among the plastidial representatives of these transfer proteins, NFU2 and NFU3 are required for the maturation of the [4Fe-4S] clusters present in photosystem I subunits, acting upstream of the high-chlorophyll fluorescence 101 (HCF101) protein. NFU2 is also required for the maturation of the [2Fe-2S]-containing dihydroxyacid dehydratase, important for branched-chain amino acid synthesis. Here, we report that recombinant Arabidopsis thaliana NFU1 assembles one [4Fe-4S] cluster per homodimer. Performing co-immunoprecipitation experiments and assessing physical interactions of NFU1 with many [4Fe-4S]-containing plastidial proteins in binary yeast two-hybrid assays, we also gained insights into the specificity of NFU1 for the maturation of chloroplastic Fe-S proteins. Using bimolecular fluorescence complementation and in vitro Fe-S cluster transfer experiments, we confirmed interactions with two proteins involved in isoprenoid and thiamine biosynthesis, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase and 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase, respectively. An additional interaction detected with the scaffold protein SUFD enabled us to build a model in which NFU1 receives its Fe-S cluster from the SUFBC2D scaffold complex and serves in the maturation of specific [4Fe-4S] client proteins. The identification of the NFU1 partner proteins reported here more clearly defines the role of NFU1 in Fe-S client protein maturation in Arabidopsis chloroplasts among other SUF components.


2010 ◽  
Vol 428 (1) ◽  
pp. 125-131 ◽  
Author(s):  
Jianxin Lu ◽  
Jacob P. Bitoun ◽  
Guoqiang Tan ◽  
Wu Wang ◽  
Wenguang Min ◽  
...  

A human homologue of the iron–sulfur cluster assembly protein IscA (hIscA1) has been cloned and expressed in Escherichia coli cells. The UV–visible absorption and EPR (electron paramagnetic resonance) measurements reveal that hIscA1 purified from E. coli cells contains a mononuclear iron centre and that the iron binding in hIscA1 expressed in E. coli cells can be further modulated by the iron content in the cell growth medium. Additional studies show that purified hIscA1 binds iron with an iron association constant of approx. 2×1019 M−1, and that the iron-bound hIscA1 is able to provide the iron for the iron–sulfur cluster assembly in a proposed scaffold protein, IscU of E. coli, in vitro. The complementation experiments indicate that hIscA1 can partially substitute for IscA in restoring the cell growth of E. coli in the M9 minimal medium under aerobic conditions. The results suggest that hIscA1, like E. coli IscA, is an iron-binding protein that may act as an iron chaperone for biogenesis of iron–sulfur clusters.


2020 ◽  
Vol 117 (34) ◽  
pp. 20555-20565 ◽  
Author(s):  
Benjamin Dennis Weiler ◽  
Marie-Christin Brück ◽  
Isabell Kothe ◽  
Eckhard Bill ◽  
Roland Lill ◽  
...  

The essential process of iron-sulfur (Fe/S) cluster assembly (ISC) in mitochondria occurs in three major phases. First, [2Fe-2S] clusters are synthesized on the scaffold protein ISCU2; second, these clusters are transferred to the monothiol glutaredoxin GLRX5 by an Hsp70 system followed by insertion into [2Fe-2S] apoproteins; third, [4Fe-4S] clusters are formed involving the ISC proteins ISCA1–ISCA2–IBA57 followed by target-specific apoprotein insertion. The third phase is poorly characterized biochemically, because previous in vitro assembly reactions involved artificial reductants and lacked at least one of the in vivo-identified ISC components. Here, we reconstituted the maturation of mitochondrial [4Fe-4S] aconitase without artificial reductants and verified the [2Fe-2S]-containing GLRX5 as cluster donor. The process required all components known from in vivo studies (i.e., ISCA1–ISCA2–IBA57), yet surprisingly also depended on mitochondrial ferredoxin FDX2 and its NADPH-coupled reductase FDXR. Electrons from FDX2 catalyze the reductive [2Fe-2S] cluster fusion on ISCA1–ISCA2 in an IBA57-dependent fashion. This previously unidentified electron transfer was occluded during previous in vivo studies due to the earlier FDX2 requirement for [2Fe-2S] cluster synthesis on ISCU2. The FDX2 function is specific, because neither FDX1, a mitochondrial ferredoxin involved in steroid production, nor other cellular reducing systems, supported maturation. In contrast to ISC factor-assisted [4Fe-4S] protein assembly, [2Fe-2S] cluster transfer from GLRX5 to [2Fe-2S] apoproteins occurred spontaneously within seconds, clearly distinguishing the mechanisms of [2Fe-2S] and [4Fe-4S] protein maturation. Our study defines the physiologically relevant mechanistic action of late-acting ISC factors in mitochondrial [4Fe-4S] cluster synthesis, trafficking, and apoprotein insertion.


Sign in / Sign up

Export Citation Format

Share Document