scholarly journals Physical and Functional Interactions of a Monothiol Glutaredoxin and an Iron Sulfur Cluster Carrier Protein with the Sulfur-donating Radical S-Adenosyl-l-methionine Enzyme MiaB

2013 ◽  
Vol 288 (20) ◽  
pp. 14200-14211 ◽  
Author(s):  
Sylvain Boutigny ◽  
Avneesh Saini ◽  
Edward E. K. Baidoo ◽  
Natasha Yeung ◽  
Jay D. Keasling ◽  
...  

The biosynthesis of iron sulfur (FeS) clusters, their trafficking from initial assembly on scaffold proteins via carrier proteins to final incorporation into FeS apoproteins, is a highly coordinated process enabled by multiprotein systems encoded in iscRSUAhscBAfdx and sufABCDSE operons in Escherichia coli. Although these systems are believed to encode all factors required for initial cluster assembly and transfer to FeS carrier proteins, accessory factors such as monothiol glutaredoxin, GrxD, and the FeS carrier protein NfuA are located outside of these defined systems. These factors have been suggested to function both as shuttle proteins acting to transfer clusters between scaffold and carrier proteins and in the final stages of FeS protein assembly by transferring clusters to client FeS apoproteins. Here we implicate both of these factors in client protein interactions. We demonstrate specific interactions between GrxD, NfuA, and the methylthiolase MiaB, a radical S-adenosyl-l-methionine-dependent enzyme involved in the maturation of a subset of tRNAs. We show that GrxD and NfuA physically interact with MiaB with affinities compatible with an in vivo function. We furthermore demonstrate that NfuA is able to transfer its cluster in vitro to MiaB, whereas GrxD is unable to do so. The relevance of these interactions was demonstrated by linking the activity of MiaB with GrxD and NfuA in vivo. We observe a severe defect in in vivo MiaB activity in cells lacking both GrxD and NfuA, suggesting that these proteins could play complementary roles in maturation and repair of MiaB.

2008 ◽  
Vol 36 (6) ◽  
pp. 1112-1119 ◽  
Author(s):  
Sibali Bandyopadhyay ◽  
Kala Chandramouli ◽  
Michael K. Johnson

Iron–sulfur (Fe–S) clusters are present in more than 200 different types of enzymes or proteins and constitute one of the most ancient, ubiquitous and structurally diverse classes of biological prosthetic groups. Hence the process of Fe–S cluster biosynthesis is essential to almost all forms of life and is remarkably conserved in prokaryotic and eukaryotic organisms. Three distinct types of Fe–S cluster assembly machinery have been established in bacteria, termed the NIF, ISC and SUF systems, and, in each case, the overall mechanism involves cysteine desulfurase-mediated assembly of transient clusters on scaffold proteins and subsequent transfer of pre-formed clusters to apo proteins. A molecular level understanding of the complex processes of Fe–S cluster assembly and transfer is now beginning to emerge from the combination of in vivo and in vitro approaches. The present review highlights recent developments in understanding the mechanism of Fe–S cluster assembly and transfer involving the ubiquitous U-type scaffold proteins and the potential roles of accessory proteins such as Nfu proteins and monothiol glutaredoxins in the assembly, storage or transfer of Fe–S clusters.


2013 ◽  
Vol 288 (23) ◽  
pp. 16680-16689 ◽  
Author(s):  
Mineaki Seki ◽  
Yukiko Takeda ◽  
Kazuhiro Iwai ◽  
Kiyoji Tanaka

The emerging link between iron metabolism and genome integrity is increasingly clear. Recent studies have revealed that MMS19 and cytosolic iron-sulfur cluster assembly (CIA) factors form a complex and have central roles in CIA pathway. However, the composition of the CIA complex, particularly the involvement of the Fe-S protein IOP1, is still unclear. The roles of each component are also largely unknown. Here, we show that MMS19, MIP18, and CIAO1 form a tight “core” complex and that IOP1 is an “external” component of this complex. Although IOP1 and the core complex form a complex both in vivo and in vitro, IOP1 behaves differently in vivo. A deficiency in any core component leads to down-regulation of all of the components. In contrast, IOP1 knockdown does not affect the level of any core component. In MMS19-overproducing cells, other core components are also up-regulated, but the protein level of IOP1 remains unchanged. IOP1 behaves like a target protein in the CIA reaction, like other Fe-S helicases, and the core complex may participate in the maturation process of IOP1. Alternatively, the core complex may catch and hold IOP1 when it becomes mature to prevent its degradation. In any case, IOP1 functions in the MMS19-dependent CIA pathway. We also reveal that MMS19 interacts with target proteins. MIP18 has a role to bridge MMS19 and CIAO1. CIAO1 also binds IOP1. Based on our in vivo and in vitro data, new models of the CIA machinery are proposed.


2008 ◽  
Vol 191 (5) ◽  
pp. 1490-1497 ◽  
Author(s):  
Jeffrey M. Boyd ◽  
Randy M. Drevland ◽  
Diana M. Downs ◽  
David E. Graham

ABSTRACT Iron-sulfur clusters may have been the earliest catalytic cofactors on earth, and most modern organisms use them extensively. Although members of the Archaea produce numerous iron-sulfur proteins, the major cluster assembly proteins found in the Bacteria and Eukarya are not universally conserved in archaea. Free-living archaea do have homologs of the bacterial apbC and eukaryotic NBP35 genes that encode iron-sulfur cluster carrier proteins. This study exploits the genetic system of Salmonella enterica to examine the in vivo functionality of apbC/NBP35 homologs from three archaea: Methanococcus maripaludis, Methanocaldococcus jannaschii, and Sulfolobus solfataricus. All three archaeal homologs could correct the tricarballylate growth defect of an S. enterica apbC mutant. Additional genetic studies showed that the conserved Walker box serine and the Cys-X-X-Cys motif of the M. maripaludis MMP0704 protein were both required for function in vivo but that the amino-terminal ferredoxin domain was not. MMP0704 protein and an MMP0704 variant protein missing the N-terminal ferredoxin domain were purified, and the Fe-S clusters were chemically reconstituted. Both proteins bound equimolar concentrations of Fe and S and had UV-visible spectra similar to those of known [4Fe-4S] cluster-containing proteins. This family of dimeric iron-sulfur carrier proteins evolved before the archaeal and eukaryal lineages diverged, representing an ancient mode of cluster assembly.


2021 ◽  
Vol 22 (4) ◽  
pp. 1598
Author(s):  
Amber L. Hendricks ◽  
Christine Wachnowsky ◽  
Brian Fries ◽  
Insiya Fidai ◽  
James A. Cowan

Lipoyl synthase (LIAS) is an iron–sulfur cluster protein and a member of the radical S-adenosylmethionine (SAM) superfamily that catalyzes the final step of lipoic acid biosynthesis. The enzyme contains two [4Fe–4S] centers (reducing and auxiliary clusters) that promote radical formation and sulfur transfer, respectively. Most information concerning LIAS and its mechanism has been determined from prokaryotic enzymes. Herein, we detail the expression, isolation, and characterization of human LIAS, its reactivity, and evaluation of natural iron–sulfur (Fe–S) cluster reconstitution mechanisms. Cluster donation by a number of possible cluster donor proteins and heterodimeric complexes has been evaluated. [2Fe–2S]-cluster-bound forms of human ISCU and ISCA2 were found capable of reconstituting human LIAS, such that complete product turnover was enabled for LIAS, as monitored via a liquid chromatography–mass spectrometry (LC–MS) assay. Electron paramagnetic resonance (EPR) studies of native LIAS and substituted derivatives that lacked the ability to bind one or the other of LIAS’s two [4Fe–4S] clusters revealed a likely order of cluster addition, with the auxiliary cluster preceding the reducing [4Fe–4S] center. These results detail the trafficking of Fe–S clusters in human cells and highlight differences with respect to bacterial LIAS analogs. Likely in vivo Fe–S cluster donors to LIAS are identified, with possible connections to human disease states, and a mechanistic ordering of [4Fe–4S] cluster reconstitution is evident.


2010 ◽  
Vol 432 (3) ◽  
pp. 429-436 ◽  
Author(s):  
Wu Wang ◽  
Hao Huang ◽  
Guoqiang Tan ◽  
Fan Si ◽  
Min Liu ◽  
...  

IscA is a key member of the iron–sulfur cluster assembly machinery in prokaryotic and eukaryotic organisms; however, the physiological function of IscA still remains elusive. In the present paper we report the in vivo evidence demonstrating the iron-binding activity of IscA in Escherichia coli cells. Supplement of exogenous iron (1 μM) in M9 minimal medium is sufficient to maximize the iron binding in IscA expressed in E. coli cells under aerobic growth conditions. In contrast, IscU, an iron–sulfur cluster assembly scaffold protein, or CyaY, a bacterial frataxin homologue, fails to bind any iron in E. coli cells under the same experimental conditions. Interestingly, the strong iron-binding activity of IscA is greatly diminished in E. coli cells under anaerobic growth conditions. Additional studies reveal that oxygen in medium promotes the iron binding in IscA, and that the iron binding in IscA in turn prevents formation of biologically inaccessible ferric hydroxide under aerobic conditions. Consistent with the differential iron-binding activity of IscA under aerobic and anaerobic conditions, we find that IscA and its paralogue SufA are essential for the iron–sulfur cluster assembly in E. coli cells under aerobic growth conditions, but not under anaerobic growth conditions. The results provide in vivo evidence that IscA may act as an iron chaperone for the biogenesis of iron–sulfur clusters in E. coli cells under aerobic conditions.


2005 ◽  
Vol 25 (24) ◽  
pp. 10833-10841 ◽  
Author(s):  
Janneke Balk ◽  
Daili J. Aguilar Netz ◽  
Katharina Tepper ◽  
Antonio J. Pierik ◽  
Roland Lill

ABSTRACT The assembly of cytosolic and nuclear iron-sulfur (Fe/S) proteins in yeast is dependent on the iron-sulfur cluster assembly and export machineries in mitochondria and three recently identified extramitochondrial proteins, the P-loop NTPases Cfd1 and Nbp35 and the hydrogenase-like Nar1. However, the molecular mechanism of Fe/S protein assembly in the cytosol is far from being understood, and more components are anticipated to take part in this process. Here, we have identified and functionally characterized a novel WD40 repeat protein, designated Cia1, as an essential component required for Fe/S cluster assembly in vivo on cytosolic and nuclear, but not mitochondrial, Fe/S proteins. Surprisingly, Nbp35 and Nar1, themselves Fe/S proteins, could assemble their Fe/S clusters in the absence of Cia1, demonstrating that these components act before Cia1. Consequently, Cia1 is involved in a late step of Fe/S cluster incorporation into target proteins. Coimmunoprecipitation assays demonstrated a specific interaction between Cia1 and Nar1. In contrast to the mostly cytosolic Nar1, Cia1 is preferentially localized to the nucleus, suggesting an additional function of Cia1. Taken together, our results indicate that Cia1 is a new member of the cytosolic Fe/S protein assembly (CIA) machinery participating in a step after Nbp35 and Nar1.


Antioxidants ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 142 ◽  
Author(s):  
Flavien Zannini ◽  
Thomas Roret ◽  
Jonathan Przybyla-Toscano ◽  
Tiphaine Dhalleine ◽  
Nicolas Rouhier ◽  
...  

In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure–function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron–sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein–protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.


Biochemistry ◽  
2009 ◽  
Vol 48 (45) ◽  
pp. 10782-10792 ◽  
Author(s):  
Michael R. Reyda ◽  
Corey J. Fugate ◽  
Joseph T. Jarrett

2004 ◽  
Vol 279 (19) ◽  
pp. 19705-19711 ◽  
Author(s):  
Patricia C. Dos Santos ◽  
Archer D. Smith ◽  
Jeverson Frazzon ◽  
Valerie L. Cash ◽  
Michael K. Johnson ◽  
...  

The NifU protein is a homodimer that is proposed to provide a molecular scaffold for the assembly of [Fe-S] clusters uniquely destined for the maturation of the nitrogenase catalytic components. There are three domains contained within NifU, with the N-terminal domain exhibiting a high degree of primary sequence similarity to a related family of [Fe-S] cluster biosynthetic scaffolds designated IscU. The C-terminal domain of NifU exhibits sequence similarity to a second family of proposed [Fe-S] cluster biosynthetic scaffolds designated Nfu. Genetic experiments described here involving amino acid substitutions within the N-terminal and C-terminal domains of NifU indicate that both domains can separately participate in nitrogenase-specific [Fe-S] cluster formation, although the N-terminal domain appears to have the dominant function. Thesein vivoexperiments were supported byin vitro[Fe-S] cluster assembly and transfer experiments involving the activation of an apo-form of the nitrogenase Fe protein.


2013 ◽  
Vol 825 ◽  
pp. 198-201 ◽  
Author(s):  
Jian She Liu ◽  
Lin Qian ◽  
Chun Li Zheng

Iron-sulfur (Fe-S) proteins are ubiquitous and participate in multiple essential functions of life. However, little is currently known about the mechanisms of iron-sulfur biosynthesis and transfer in acidophilic microorganisms. In this study, the IscS, IscU and IscA proteins from Acidithiobacillus ferrooxidans were successfully expressed in Escherichia coli and purified by affinity chromatography. The IscS was a cysteine desulfurase which catalyzes desulfurization of L-cysteine and transfer sulfur for iron-sulfur cluster assembly. Purified IscU did not have an iron-sulfur cluster but could act as a scaffold protein to assemble the [2Fe-2S] cluster in vitro. The IscA was a [4Fe-4S] cluster binding protein, but it also acted as an iron binding protein. Further studies indicated that the iron sulfur clusters could be transferred from pre-assembled scaffold proteins to apo-form iron sulfur proteins, the reconstituted iron sulfur proteins could restore their physiological activities.


Sign in / Sign up

Export Citation Format

Share Document