initial assembly
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 20)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
pp. 095605992110640
Author(s):  
Charles Haskell ◽  
Nicolas Montagne ◽  
Cyril Douthe ◽  
Olivier Baverel ◽  
Corentin Fivet

Geodesic gridshells are shell structures made of continuous elements following geodesic lines. Their properties ease the use of beams with anisotropic cross-sections by avoiding bending about their strong axis. However, such bending may arise when flattening arbitrary geodesic grids, which forbids their initial assembly on the ground. This study provides a process to design elastic geodesic gridshells, that is, gridshells that minimise bending moments in both formed and near-flat configurations. The generation process first brings a target geodesic network onto a plane by maintaining arc lengths. The flat mesh is then relaxed to minimise its main curvatures and hence bending moments in its members. The result is an elastic geodesic gridshell that can be assembled flat on the ground and then lifted up into its target surface. The method is applied to the design of six geodesic gridshells made of reclaimed skis.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hatim Almutairi ◽  
Michael D. Urbaniak ◽  
Michelle D. Bates ◽  
Narissara Jariyapan ◽  
Godwin Kwakye-Nuako ◽  
...  

AbstractWe provide the raw and processed data produced during the genome sequencing of isolates from six species of parasites from the sub-family Leishmaniinae: Leishmania martiniquensis (Thailand), Leishmania orientalis (Thailand), Leishmania enriettii (Brazil), Leishmania sp. Ghana, Leishmania sp. Namibia and Porcisia hertigi (Panama). De novo assembly was performed using Nanopore long reads to construct chromosome backbone scaffolds. We then corrected erroneous base calling by mapping short Illumina paired-end reads onto the initial assembly. Data has been deposited at NCBI as follows: raw sequencing output in the Sequence Read Archive, finished genomes in GenBank, and ancillary data in BioSample and BioProject. Derived data such as quality scoring, SAM files, genome annotations and repeat sequence lists have been deposited in Lancaster University’s electronic data archive with DOIs provided for each item. Our coding workflow has been deposited in GitHub and Zenodo repositories. This data constitutes a resource for the comparative genomics of parasites and for further applications in general and clinical parasitology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tomoko Yamaguchi ◽  
Fumiaki Makino ◽  
Tomoko Miyata ◽  
Tohru Minamino ◽  
Takayuki Kato ◽  
...  

AbstractThe basal body of the bacterial flagellum is a rotary motor that consists of several rings (C, MS and LP) and a rod. The LP ring acts as a bushing supporting the distal rod for its rapid and stable rotation without much friction. Here, we use electron cryomicroscopy to describe the LP ring structure around the rod, at 3.5 Å resolution, from Salmonella Typhimurium. The structure shows 26-fold rotational symmetry and intricate intersubunit interactions of each subunit with up to six partners, which explains the structural stability. The inner surface is charged both positively and negatively. Positive charges on the P ring (the part of the LP ring that is embedded within the peptidoglycan layer) presumably play important roles in its initial assembly around the rod with a negatively charged surface.


2021 ◽  
Author(s):  
Mark Perry ◽  
Olivier Barnouin ◽  
Ronald Daly ◽  
Edward Bierhaus ◽  
Ronald-Louis Ballouz ◽  
...  

Abstract A planetary surface’s resistance to change is generally described as its “strength” (units of stress). The surface strength of small, rubble-pile asteroids, which consist of fragments of larger bodies that were collisionally disrupted, is poorly constrained due to their wide departure from terrestrial analogs. Here, we report the observation of an ejecta deposit surrounding an impact crater that limits the maximum surface strength of the near-Earth rubble-pile asteroid (101955) Bennu. The presence of this deposit implies that ejecta were mobilized with velocities less than the escape velocity of Bennu, 20 cm/s. Because ejecta velocities increase with surface strength, the ejecta deposit can only be explained if the effective strength of the surface material near the crater is exceedingly low, ≤100 Pa. This is three orders of magnitude below values commonly used for asteroid surfaces, but is supported by previous observations of an artificial impact crater on a similar asteroid, Ryugu. Our findings indicate a mobile surface that has likely been renewed multiple times since Bennu’s initial assembly and have far-reaching implications for interpreting observations of Bennu and other rubble piles.


2021 ◽  
Author(s):  
Afrooz Dabbaghizadeh ◽  
Alexandre Pare ◽  
Zacharie Cheng-Boivin ◽  
Robin Dagher ◽  
Sandra Minotti ◽  
...  

Autosomal Recessive Spastic Ataxia of the Charlevoix Saguenay (ARSACS), is caused by loss of function mutations in the SACS gene, which encodes sacsin, a giant protein of 520 kDa. A key feature of the absence of sacsin in cells is the formation of abnormal bundles of intermediate filaments (IF) including neurofilaments (NF) in neurons and vimentin IF in fibroblasts, suggesting a role of sacsin in IF homeostasis. Sacsin contains a J domain (SacsJ) homologous to Hsp40, that can interact with Hsp70 chaperones. The SacsJ domain resolved NF bundles in cultured Sacs-/- neurons, however, its mechanism is still unclear. Here, we focused on the role of SacsJ in NF assembly. We report that the SacsJ domain directly interacts with NF proteins in vitro to disassemble NFL filaments, and to inhibit their initial assembly, in the absence of Hsp70. We generated a cell-penetrating peptide derived from this domain, SacsJ-myc-TAT, which was efficient in disassembling both vimentin IF and NF in cultured fibroblasts and Sacs+/+ motor neurons as well as NF bundles in cultured Sacs-/- motor neurons. Whereas a normal NF network was restored in Sacs-/- neurons treated with the SacsJ peptide, there was some loss of IF networks in Sacs+/+ fibroblasts or neurons. These results suggest that SacsJ is a key regulator of NF and IF networks in cells, with implications for its therapeutic use.


mSphere ◽  
2021 ◽  
Author(s):  
Nicholas C. Dove ◽  
Allison M. Veach ◽  
Wellington Muchero ◽  
Toni Wahl ◽  
James C. Stegen ◽  
...  

The initial assembly of the plant microbiome may establish the trajectory of forthcoming microbiome states, which could determine the overall future health of the plant. However, while much is known about the initial microbiome assembly of grasses and agricultural crops, less is known about the initial microbiome of long-lived trees, such as poplar ( Populus spp.).


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 847
Author(s):  
Vidhya Jagannathan ◽  
Christophe Hitte ◽  
Jeffrey M. Kidd ◽  
Patrick Masterson ◽  
Terence D. Murphy ◽  
...  

The domestic dog has evolved to be an important biomedical model for studies regarding the genetic basis of disease, morphology and behavior. Genetic studies in the dog have relied on a draft reference genome of a purebred female boxer dog named “Tasha” initially published in 2005. Derived from a Sanger whole genome shotgun sequencing approach coupled with limited clone-based sequencing, the initial assembly and subsequent updates have served as the predominant resource for canine genetics for 15 years. While the initial assembly produced a good-quality draft, as with all assemblies produced at the time, it contained gaps, assembly errors and missing sequences, particularly in GC-rich regions, which are found at many promoters and in the first exons of protein-coding genes. Here, we present Dog10K_Boxer_Tasha_1.0, an improved chromosome-level highly contiguous genome assembly of Tasha created with long-read technologies that increases sequence contiguity >100-fold, closes >23,000 gaps of the CanFam3.1 reference assembly and improves gene annotation by identifying >1200 new protein-coding transcripts. The assembly and annotation are available at NCBI under the accession GCF_000002285.5.


2021 ◽  
Author(s):  
Mingzhou Liu ◽  
Xin Xu ◽  
Xiaoqiao Wang ◽  
Maogen Ge ◽  
Lin Ling ◽  
...  

Abstract To improve the accuracy and efficiency of path planning for the mechanical assembly process of products, an on-line path planning method for mechanical assembly process robots based on visual field space is proposed in this paper. Firstly, to predict and describe the assembly process, the concept of field-of-view space (FOVS) is proposed. Secondly, image processing is carried out by knowledge base to judge the assembly type and current assembly state, and the initial assembly path is given. Then, the assembly process is integrated and solved, and the location estimation of obstacles are given according to the FOVS. Finally, the ant colony algorithm is improved to get the final assembly optimization path. Comparing the algorithm with the ACS algorithm in the aspect of path planning. The length of path planning is reduced by 2%, and the algorithm time is reduced by 0.5s, the accuracy and efficiency have been effectively improved. the result shows that the algorithm is effective.


2021 ◽  
Vol 249 ◽  
pp. 06014
Author(s):  
Ignacio Andrade-Silva ◽  
Théo Godefroy ◽  
Olivier Pouliquen ◽  
Joel Marthelot

One striking difference between aggregates of flexible frictional fibres and other granular materials like rigid spheres is the effective cohesion of their assembly. While glue or capillary bridges are needed to shape aggregates of spherical particles and build sandcastles, for fibres, no need for glue to build a nest. Here we study an assembly of mono disperse flexible fibres. We first use X-ray microtomography to characterise the geometry of the initial assembly, the number of contact points and mean curvatures of the fibres. Using forcedisplacement measurements, we characterise the macroscopic cohesive strength of the aggregate by varying the geometry of the fibres, the fibres mechanicals properties and the packing of the preparation. Finally, we relate the macroscopic mechanical behaviour of the assembly with the filament reorganisation at the microscopic scale.


2020 ◽  
Author(s):  
R. A. Petazzi ◽  
A. A. Koikkarah ◽  
N. D. Tischler ◽  
S. Chiantia

Hantaviruses are emerging pathogens that occasionally cause deadly outbreaks in the human population. While the structure of the viral envelope has been characterized with high precision, protein-protein interactions leading to the formation of new virions in infected cells are not fully understood yet. We use quantitative fluorescence microscopy (i.e., Number&Brightness analysis and fluorescence fluctuation spectroscopy) to monitor the interactions that lead to oligomeric spike complex formation in the physiological context of living cells. To this aim, we quantified protein-protein interactions for the glycoproteins Gn and Gc from Puumala and Hantaan orthohantaviruses in several cellular models. The oligomerization of each protein was analyzed in relation to subcellular localization, concentration, and the concentration of its interaction partner. Our results indicate that when expressed separately, Gn and Gc form respectively homo-tetrameric and homo-dimeric complexes, in a concentration-dependent manner. Site-directed mutations or deletion mutants showed the specificity of their homotypic interactions. When both glycoproteins were co-expressed, we observed in the Golgi apparatus clear indication of Gn-Gc interactions and the formation of Gn-Gc multimeric protein complexes of different sizes, while using various labeling schemes to minimize the influence of the fluorescent tags. Such large glycoprotein multimers may be identified as multiple Gn viral spikes interconnected via Gc-Gc contacts. This observation provides a possible first evidence for the initial assembly steps of the viral envelope, within this organelle, directly in living cells. IMPORTANCE In this work, we investigate protein-protein interactions that drive the assembly of the hantaviruses envelope. These emerging pathogens have the potential to cause deadly outbreaks in the human population. Therefore, it is important to improve our quantitative understanding of the viral assembly process in infected cells, from a molecular point of view. By applying advanced fluorescence microscopy methods, we monitored the formation of viral spike complexes in different cell types. Our data support a model for hantavirus assembly according to which viral spikes are formed via the clustering of hetero-dimers of the two viral glycoproteins Gn and Gc. Furthermore, the observation of large Gn-Gc hetero-multimers provide a possible first evidence for the initial assembly steps of the viral envelope, directly in the Golgi apparatus of living cells.


Sign in / Sign up

Export Citation Format

Share Document