scholarly journals Synthetic thick filaments: A new avenue for better understanding the myosin super-relaxed state in healthy, disease, and mavacamten-treated cardiac systems

2020 ◽  
pp. jbc.RA120.016506 ◽  
Author(s):  
Sampath K Gollapudi ◽  
Ming Yu ◽  
Qing-Fen Gan ◽  
Suman Nag

A hallmark feature of myosin-II is that it can spontaneously self-assemble into bipolar synthetic thick filaments (STFs) in low ionic strength buffers, thereby serving as a reconstituted in-vitro model for muscle thick filament. While these STFs have been extensively used for structural characterization, their functional evaluation has been limited.  In this report, we show that myosins in STFs mirror the more electrostatic and cooperative interactions that underlie the energy-sparing super-relaxed (SRX) state, which are not seen using shorter myosin sub-fragments, heavy meromyosin (HMM) and myosin subfragment-1 (S1). Using these STFs, we show several pathophysiological insults in hypertrophic cardiomyopathy, including the R403Q myosin mutation, phosphorylation of myosin light chains, and increased ADP:ATP ratio destabilize the SRX population. Furthermore, wild-type myosin containing STFs, but not S1, HMM, or STFs-containing R403Q myosin, recapitulated the ADP-induced destabilization of the SRX state. Studies involving a clinical-stage small molecule inhibitor, mavacamten, showed that it is not only more effective in increasing myosin SRX population in STFs than in S1 or HMM ,  but it also increases myosin SRX population equally well in STFs made of healthy and disease-causing R403Q myosin. Importantly, we also found that pathophysiological perturbations   such as elevated ADP concentration weakens the mavacamten’s ability to increase the myosin SRX population, suggesting that mavacamten-bound myosin heads are not permanently protected in the SRX state but can be recruited   into action. These findings collectively emphasize that STFs serve as a valuable tool to provide novel insights into the myosin SRX state in healthy, disease, and therapeutic conditions.

2020 ◽  
Author(s):  
Sampath K. Gollapudi ◽  
Suman Nag

ABSTRACTA hallmark feature of myosin-II is that it can spontaneously self-assemble into bipolar synthetic thick filaments (STFs) in low ionic strength buffers, thereby serving as a reconstituted in vitro model for muscle thick filament. While these STFs have been extensively used for structural characterization, their use for functional studies has been very limited. In this report, we show that the ultra-low ATP-consuming super-relaxed (SRX) state of myosin is electrostatically more stable in STFs as compared with shorter myosin sub-fragments that lack the distal tail required for thick filament assembly. However, this electrostatic stability of the SRX state is weakened by phosphorylation of myosin light chains or the hypertrophic cardiomyopathy-causing myosin R403Q mutation. We also show that ADP binding to myosin depopulates the SRX population in STFs made of wild-type (WT) myosin, but not in S1, HMM, or STFs made of mutant R403Q myosin. Collectively, these findings emphasize that a critical network of inter- and intra-molecular interactions that underlie the SRX state of myosin are mostly preserved in STFs, establishing it as a native-like tool to interrogate myosin regulation. Next, using STFs, we show that a clinical-stage small molecule inhibitor, mavacamten, is more effective in promoting the myosin SRX state in STFs than in S1 or HMM and that it is equally potent in STFs made of atrial-WT, ventricular-WT, and mutant-R403Q myosin. Also, we found that mavacamten-bound heads are not permanently protected in the SRX state but can be recruited in response to physiological perturbations, thus providing new insights into its inhibitory mechanism.


1994 ◽  
Vol 107 (5) ◽  
pp. 1115-1129 ◽  
Author(s):  
C. Ferguson ◽  
A. Lakey ◽  
A. Hutchings ◽  
G.W. Butcher ◽  
K.R. Leonard ◽  
...  

Asynchronous insect flight muscles produce oscillatory contractions and can contract at high frequency because they are activated by stretch as well as by Ca2+. Stretch activation depends on the high stiffness of the fibres and the regular structure of the filament lattice. Cytoskeletal proteins may be important in stabilising the lattice. Two proteins, zeelin 1 (35 kDa) and zeelin 2 (23 kDa), have been isolated from the cytoskeletal fraction of Lethocerus flight muscle. Both zeelins have multiple isoforms of the same molecular mass and different charge. Zeelin 1 forms micelles and zeelin 2 forms filaments when renatured in low ionic strength solutions. Filaments of zeelin 2 are ribbons 10 nm wide and 3 nm thick. The position of zeelins in fibres from Lethocerus flight and leg muscle was determined by immunofluorescence and immunoelectron microscopy. Zeelin 1 is found in flight and leg fibres and zeelin 2 only in flight fibres. In flight myofibrils, both zeelins are in discrete regions of the A-band in each half sarcomere. Zeelin 1 is across the whole A-band in leg myofibrils. Zeelins are not in the Z-disc, as was thought previously, but migrate to the Z-disc in glycerinated fibres. Zeelins are associated with thick filaments and analysis of oblique sections showed that zeelin 1 is closer to the filament shaft than zeelin 2. The antibody labelling pattern is consistent with zeelin molecules associated with myosin near the end of the rod region. Alternatively, the position of zeelins may be determined by other A-band proteins. There are about 2.0 to 2.5 moles of myosin per mole of each zeelin. The function of these cytoskeletal proteins may be to maintain the ordered structure of the thick filament.


1980 ◽  
Vol 58 (7) ◽  
pp. 797-801 ◽  
Author(s):  
Maryanne Vahey ◽  
Stylianos P. Scordilis

Proteins exhibiting all of the basic structural and biochemical characteristics of actin and myosin have been isolated from the parenchymal cells of the fruit of the tomato, Lycopersicon esculentum. Crude cytoplasmic extracts of these cells contain filaments that can be decorated by rabbit skeletal muscle myosin subfragment-1 (S-1). Polymerized tomato actin activates the Mg2+–ATPase of both skeletal and tomato myosin at physiological ionic strength. Tomato actin comigrates with skeletal actin on sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE) indicating an apparent molecular weight of 45 000. High ionic strength extracts of tomato contain a myosin whose ATPase activity in 0.5 M KCl is maximal in the presence of K+-ethylenediaminetetraacetic acid (K+-EDTA) and is inhibited by Mg2+. Tomato myosin interacts with skeletal F-actin to form an actomyosin complex that can be dissociated by ATP. At low ionic strength the Mg2+–ATPase of the myosin can be activated by actin.


1975 ◽  
Vol 149 (2) ◽  
pp. 365-379 ◽  
Author(s):  
R C Bottomley ◽  
I P Trayer

Actin and myosin were immobilized by coupling them to agarose matrices. Both immobilized G-actin and immobilized myosin retain most of the properties of the proteins in free solution and are reliable over long periods of time. Sepharose-F-actin, under the conditions used in this study, has proved unstable and variable in its properties. Sepharose-G-actin columns were used to bind heavy meromyosin and myosin subfragment 1 specifically and reversibly. The interaction involved is sensitive to variation in ionic strength, such that myosin itself is not retained by the columns at the high salt concentration required for its complete solubilization. Myosin, rendered soluble at low ionic strength by polyalanylation, will interact successfully with the immobilized actin. The latter can distinguish between active and inactive fractions of the proteolytic and polyalanyl myosin derivatives, and was used in the preparation of these molecules. The complexes formed between the myosin derivatives and Sepharose-G-actin can be dissociated by low concentrations of ATP, ADP and pyrophosphate in both the presence and the absence of Mg2+. The G-actin columns were used to evaluate the results of chemical modifications of myosin subfragments on their interactions with actin. F-Actin in free solution is bound specifically and reversibly to columns of insolubilized myosin. Thus, with elution by either ATP or pyrophosphate, actin has been purified in one step from extracts of acetone-dried muscle powder.


1999 ◽  
Vol 147 (5) ◽  
pp. 1039-1048 ◽  
Author(s):  
Wenchuan Liang ◽  
Hans M. Warrick ◽  
James A. Spudich

Myosin II thick filament assembly in Dictyostelium is regulated by phosphorylation at three threonines in the tail region of the molecule. Converting these three threonines to aspartates (3×Asp myosin II), which mimics the phosphorylated state, inhibits filament assembly in vitro, and 3×Asp myosin II fails to rescue myosin II–null phenotypes. Here we report a suppressor screen of Dictyostelium myosin II–null cells containing 3×Asp myosin II, which reveals a 21-kD region in the tail that is critical for the phosphorylation control. These data, combined with new structural evidence from electron microscopy and sequence analyses, provide evidence that thick filament assembly control involves the folding of myosin II into a bent monomer, which is unable to incorporate into thick filaments. The data are consistent with a structural model for the bent monomer in which two specific regions of the tail interact to form an antiparallel tetrameric coiled–coil structure.


1982 ◽  
Vol 95 (1) ◽  
pp. 223-233 ◽  
Author(s):  
M S Mooseker ◽  
T D Pollard ◽  
K A Wharton

We examined the nucleated polymerization of actin from the two ends of filaments that comprise the microvillus (MV) core in intestinal epithelial cells by electron microscopy. Three different in vitro preparations were used to nucleate the polymerization of muscle G-actin: (a) MV core fragments containing "barbed" and "pointed" filament ends exposed by shear during isolation, (b) isolated, membrane-intact brush borders, and (c) brush borders demembranated with Triton-X 100. It has been demonstrated that MV core fragments nucleate filament growth from both ends with a strong bias for one end. Here we identify the barbed end of the core fragment as the fast growing end by decoration with myosin subfragment one. Both cytochalasin B (CB) and Acanthamoeba capping protein block filament growth from the barbed but not the pointed end of MV core fragments. To examine actin assembly from the naturally occurring, membrane-associated ends of MV core filaments, isolated membrane-intact brush borders were used to nucleate the polymerization of G-actin. Addition of salt (75 mM KCl, 1 mM MgSO4) to brush borders preincubated briefly at low ionic strength with G-actin induced the formation of 0.2-0.4 micron "growth zones" at the tips of microvilli. The dense plaque at the tip of the MV core remains associated with the membrane and the presumed growing ends of the filaments. We also observed filament growth from the pointed ends of core filaments in the terminal web. We did not observe filament growth at the membrane-associated ends of core filaments when the latter were in the presence of 2 microM CB or if the low ionic strength incubation step was omitted. Addition of G-actin to demembranated brush borders, which retain the dense plaque on their MV tips, resulted in filament growth from both ends of the MV core. Again, 2 microM CB blocked filament growth from only the barbed (tip) end of the core. The dense plaque remained associated with the tip-end of the core in the presence of CB but usually was dislodged in control preparations where nucleated polymerization from the tip-end of the core occurred. Our results support the notion that microvillar assembly and changes in microvillar length could occur by actin monomer addition/loss at the barbed, membrane-associated ends of MV core filaments.


2020 ◽  
Vol 21 (12) ◽  
pp. 4421
Author(s):  
Yurii S. Borovikov ◽  
Armen O. Simonyan ◽  
Stanislava V. Avrova ◽  
Vladimir V. Sirenko ◽  
Charles S. Redwood ◽  
...  

Substitution of Ala for Glu residue in position 173 of γ-tropomyosin (Tpm3.12) is associated with muscle weakness. Here we observe that this mutation increases myofilament Ca2+-sensitivity and inhibits in vitro actin-activated ATPase activity of myosin subfragment-1 at high Ca2+. In order to determine the critical conformational changes in myosin, actin and tropomyosin caused by the mutation, we used the technique of polarized fluorimetry. It was found that this mutation changes the spatial arrangement of actin monomers and myosin heads, and the position of the mutant tropomyosin on the thin filaments in muscle fibres at various mimicked stages of the ATPase cycle. At low Ca2+ the E173A mutant tropomyosin shifts towards the inner domains of actin at all stages of the cycle, and this is accompanied by an increase in the number of switched-on actin monomers and myosin heads strongly bound to F-actin even at relaxation. Contrarily, at high Ca2+ the amount of the strongly bound myosin heads slightly decreases. These changes in the balance of the strongly bound myosin heads in the ATPase cycle may underlie the occurrence of muscle weakness. W7, an inhibitor of troponin Ca2+-sensitivity, restores the increase in the number of myosin heads strongly bound to F-actin at high Ca2+ and stops their strong binding at relaxation, suggesting the possibility of using Ca2+-desensitizers to reduce the damaging effect of the E173A mutation on muscle fibre contractility.


1989 ◽  
Vol 258 (3) ◽  
pp. 831-836 ◽  
Author(s):  
D H Heeley ◽  
L B Smillie ◽  
E M Lohmeier-Vogel

The role of the overlap region at the ends of tropomyosin molecules in the properties of regulated thin filaments has been investigated by substituting nonpolymerizable tropomyosin for tropomyosin in a reconstituted troponin-tropomyosin-actomyosin subfragment 1 ATPase assay system. A previous study [Heeley, Golosinka & Smillie (1987) J. Biol. Chem. 262, 9971-9978] has shown that at an ionic strength of 70 mM, troponin will induce full binding of nonpolymerizable tropomyosin to F-actin both in the presence and absence of calcium. At a myosin subfragment 1-to-actin ratio of 2:1 ([actin] = 4 microM) and an ionic strength of 50 mM, comparable levels of ATPase inhibition were observed with increasing levels of tropomyosin or the truncated derivative in the presence of troponin (-Ca2+). Large differences were noted, however, in the activation by Ca2+. Significantly lower ATPase activities were observed with nonpolymerizable tropomyosin and troponin (+Ca2+) over a range of subfragment 1-to-actin ratios from 0.25 to 2.5. The concentration of subfragment 1 required to generate ATPase activities exceeding those seen with actomyosin subfragment 1 alone under these conditions was 3-4-fold greater when nonpolymerizable tropomyosin was used. Similar effects were seen at the much lower ionic strength of 13 mM and are consistent with the reduced ATPase activity with nonpolymerizable tropomyosin observed previously [Walsh, Trueblood, Evans & Weber (1985) J. Mol. Biol. 182, 265-269] at low ionic strength and a subfragment 1-to-actin ratio of 1:100. Little cooperativity in activity as a function of subfragment 1 concentration with either intact tropomyosin or its truncated derivative was observed under the present conditions. Further studies are directed towards an understanding of these effects in terms of the two-state binding model for the attachment of myosin heads to regulated thin filaments.


Nature ◽  
1987 ◽  
Vol 328 (6130) ◽  
pp. 536-539 ◽  
Author(s):  
Yoko Yano Toyoshima ◽  
Stephen J. Kron ◽  
Elizabeth M. McNally ◽  
Kenneth R. Niebling ◽  
Chikashi Toyoshima ◽  
...  

1977 ◽  
Vol 25 (1) ◽  
pp. 387-402
Author(s):  
J.S. Condeelis

Synthetic myosin thick filaments were formed from preparations of electrophoretically homogeneous myosin isolated from Chaos carolinensis and Amoeba proteus when dialysed to physiological ionic strength and pH. Myosin dialysed directly against low ionic strength buffers formed native-like thick filaments in the presence and absence of exogenous divalent cations. The average dimensions of the synthetic filaments grown under these conditions were 455 nm long and 16 nm wide with a distinct bare central zone 174 nm long. Myosin predialysed against EGTA-EDTA solutions at high ionic strength and then dialysed to low ionic strength formed native-like filaments only in the presence of 1mM Mg2+. 1 mM Ca2+ could not be substituted for Mg2+ under these conditions to achieve native-like filaments. Filaments grown from predialysed myosin in the absence of Mg2+ resembled EGTA-dissociated myosin filaments observed in EGTA-treated cytoplasm and were highly branched, poorly formed filaments lacking a distinct bare central zone. The average dimensions of the filaments grown from predialysed myosin in the absence of Mg2+ were 328 nm long, 13 nm wide with a bare central zone 111 nm long. Under the conditions tested, myosin isolated from these amoebae did not demonstrate a divalent cation requirement for thick filament formation. The results obtained with myosin isolated from the 2 organisms were identical.


Sign in / Sign up

Export Citation Format

Share Document