scholarly journals Malaria parasite plasmepsins: More than just plain old degradative pepsins

2020 ◽  
Vol 295 (25) ◽  
pp. 8425-8441 ◽  
Author(s):  
Armiyaw S. Nasamu ◽  
Alexander J. Polino ◽  
Eva S. Istvan ◽  
Daniel E. Goldberg

Plasmepsins are a group of diverse aspartic proteases in the malaria parasite Plasmodium. Their functions are strikingly multifaceted, ranging from hemoglobin degradation to secretory organelle protein processing for egress, invasion, and effector export. Some, particularly the digestive vacuole plasmepsins, have been extensively characterized, whereas others, such as the transmission-stage plasmepsins, are minimally understood. Some (e.g. plasmepsin V) have exquisite cleavage sequence specificity; others are fairly promiscuous. Some have canonical pepsin-like aspartic protease features, whereas others have unusual attributes, including the nepenthesin loop of plasmepsin V and a histidine in place of a catalytic aspartate in plasmepsin III. We have learned much about the functioning of these enzymes, but more remains to be discovered about their cellular roles and even their mechanisms of action. Their importance in many key aspects of parasite biology makes them intriguing targets for antimalarial chemotherapy. Further consideration of their characteristics suggests that some are more viable drug targets than others. Indeed, inhibitors of invasion and egress offer hope for a desperately needed new drug to combat this nefarious organism.

1991 ◽  
Vol 173 (4) ◽  
pp. 961-969 ◽  
Author(s):  
D E Goldberg ◽  
A F Slater ◽  
R Beavis ◽  
B Chait ◽  
A Cerami ◽  
...  

Hemoglobin is an important nutrient source for intraerythrocytic malaria organisms. Its catabolism occurs in an acidic digestive vacuole. Our previous studies suggested that an aspartic protease plays a key role in the degradative process. We have now isolated this enzyme and defined its role in the hemoglobinolytic pathway. Laser desorption mass spectrometry was used to analyze the proteolytic action of the purified protease. The enzyme has a remarkably stringent specificity towards native hemoglobin, making a single cleavage between alpha 33Phe and 34Leu. This scission is in the hemoglobin hinge region, unraveling the molecule and exposing other sites for proteolysis. The protease is inhibited by pepstatin and has NH2-terminal homology to mammalian aspartic proteases. Isolated digestive vacuoles make a pepstatin-inhibitable cleavage identical to that of the purified enzyme. The pivotal role of this aspartic hemoglobinase in initiating hemoglobin degradation in the malaria parasite digestive vacuoles is demonstrated.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Jasmin Lindner ◽  
Kamila Anna Meissner ◽  
Isolmar Schettert ◽  
Carsten Wrenger

Malaria is an infectious disease that results in serious health problems in the countries in which it is endemic. Annually this parasitic disease leads to more than half a million deaths; most of these are children in Africa. An effective vaccine is not available, and the treatment of the disease is solely dependent on chemotherapy. However, drug resistance is spreading, and the identification of new drug targets as well as the development of new antimalarials is urgently required. Attention has been drawn to a variety of essential plasmodial proteins, which are targeted to intra- or extracellular destinations, such as the digestive vacuole, the apicoplast, or into the host cell. Interfering with the action or the transport of these proteins will impede proliferation of the parasite. In this mini review, we will shed light on the present discovery of chemotherapeutics and potential drug targets involved in protein trafficking processes in the malaria parasite.


2019 ◽  
Vol 18 (23) ◽  
pp. 2008-2021 ◽  
Author(s):  
Snigdha Singh ◽  
Neha Sharma ◽  
Charu Upadhyay ◽  
Sumit Kumar ◽  
Brijesh Rathi ◽  
...  

Malaria is a lethal disease causing devastating global impact by killing more than 8,00,000 individuals yearly. A noticeable decline in malaria related deaths can be attributed to the most reliable treatment, ACTs against P. falciparum. However, the cumulative resistance of the malaria parasite against ACTs is a global threat to control the disease and, therefore the new effective therapeutics are urgently needed, including new treatment approaches. Majority of the antimalarial drugs target BS malarial infection. Currently, scientists are eager to explore the drugs with potency against not only BS but other life stages such as sexual and asexual stages of the malaria parasite. Liver Stage is considered as one of the important drug targets as it always leads to BS and the infection can be cured at this stage before it enters into the Blood Stage. However, a limited number of compounds are reported effective against LS malaria infection probably due to scarcity of in vitro LS culture methods and clinical possibilities. This mini review covers a range of chemical compounds showing efficacy against BS and LS of the malaria parasite’s life cycle collectively (i.e. dual stage activity). These scaffolds targeting dual stages are essential for the eradication of malaria and to evade resistance.


2018 ◽  
Vol 20 (6) ◽  
pp. 2066-2087 ◽  
Author(s):  
Chen Wang ◽  
Lukasz Kurgan

AbstractDrug–protein interactions (DPIs) underlie the desired therapeutic actions and the adverse side effects of a significant majority of drugs. Computational prediction of DPIs facilitates research in drug discovery, characterization and repurposing. Similarity-based methods that do not require knowledge of protein structures are particularly suitable for druggable genome-wide predictions of DPIs. We review 35 high-impact similarity-based predictors that were published in the past decade. We group them based on three types of similarities and their combinations that they use. We discuss and compare key aspects of these methods including source databases, internal databases and their predictive models. Using our novel benchmark database, we perform comparative empirical analysis of predictive performance of seven types of representative predictors that utilize each type of similarity individually and all possible combinations of similarities. We assess predictive quality at the database-wide DPI level and we are the first to also include evaluation over individual drugs. Our comprehensive analysis shows that predictors that use more similarity types outperform methods that employ fewer similarities, and that the model combining all three types of similarities secures area under the receiver operating characteristic curve of 0.93. We offer a comprehensive analysis of sensitivity of predictive performance to intrinsic and extrinsic characteristics of the considered predictors. We find that predictive performance is sensitive to low levels of similarities between sequences of the drug targets and several extrinsic properties of the input drug structures, drug profiles and drug targets. The benchmark database and a webserver for the seven predictors are freely available at http://biomine.cs.vcu.edu/servers/CONNECTOR/.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Bharath Balu

The genome sequence of the human malaria parasite,Plasmodium falciparum, was released almost a decade ago. A majority of thePlasmodiumgenome, however, remains annotated to code for hypothetical proteins with unknown functions. The introduction of forward genetics has provided novel means to gain a better understanding of gene functions and their associated phenotypes inPlasmodium. Even with certain limitations, the technique has already shown significant promise to increase our understanding of parasite biology needed for rationalized drug and vaccine design. Further improvements to the mutagenesis technique and the design of novel genetic screens should lead us to some exciting discoveries about the critical weaknesses ofPlasmodium, and greatly aid in the development of new disease intervention strategies.


2016 ◽  
Vol 113 (8) ◽  
pp. 2080-2085 ◽  
Author(s):  
Hanafy M. Ismail ◽  
Victoria Barton ◽  
Matthew Phanchana ◽  
Sitthivut Charoensutthivarakul ◽  
Michael H. L. Wong ◽  
...  

The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography–MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs.


2001 ◽  
Vol 17 (11) ◽  
pp. 532-537 ◽  
Author(s):  
Graham H. Coombs ◽  
Daniel E. Goldberg ◽  
Michael Klemba ◽  
Colin Berry ◽  
John Kay ◽  
...  

1996 ◽  
Vol 79 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Kathryn E. Luker ◽  
Susan E. Francis ◽  
Ilya Y. Gluzman ◽  
Daniel E. Goldberg

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Thales Kronenberger ◽  
Jasmin Lindner ◽  
Kamila A. Meissner ◽  
Flávia M. Zimbres ◽  
Monika A. Coronado ◽  
...  

Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6de novosynthesis present inPlasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines), the aspartate aminotransferase (AspAT, involved in the protein biosynthesis), and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism).


Sign in / Sign up

Export Citation Format

Share Document