scholarly journals Open Database Searching Enables the Identification and Comparison of Bacterial Glycoproteomes without Defining Glycan Compositions Prior to Searching

2020 ◽  
Vol 19 (9) ◽  
pp. 1561-1574 ◽  
Author(s):  
Ameera Raudah Ahmad Izaham ◽  
Nichollas E. Scott

Mass spectrometry has become an indispensable tool for the characterization of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. Although glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses before database searching. Using this approach, we demonstrate how wide tolerance searching can be used to compare glycan use across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.

Author(s):  
Ameera Raudah Ahmad Izaham ◽  
Nichollas E. Scott

ABSTRACTMass spectrometry has become an indispensable tool for the characterisation of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. While glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses prior to database searching. Utilising this approach, we demonstrate how wide tolerance searching can be used to compare glycan utilisation across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.


2020 ◽  
Author(s):  
Olivier F.C. den Ouden ◽  
Jelle D. Assink ◽  
Pieter S.M. Smets ◽  
Läslo G. Evers

<p>The International Monitoring System (IMS) is in place for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Part of the IMS are 60 infrasound arrays, of which 51 currently provide real-time infrasound recordings from around the world. Those arrays play a central role in the characterization of the global infrasonic wavefield and localization of infrasound sources.</p><p>Power Spectral Density (PSD) estimates give insight into the noise levels per station and array. The IMS global low and high noise model curves have been determined in a study by Brown et al. [2014] using a distribution of computed PSDs. All the IMS infrasound arrays, except IS23, have been included in the determination of the atmospheric ambient noise curves. IS23 is located at Kerguelen Island and exist of 15 elements that have been divided into five 100 meter aperture triplets arrays. The array is located at one of the noisiest locations in the world, due to the high wind conditions that exist year-round. The resulting high noise floor appears to hamper infrasound detection at this island array.</p><p>In this work, the effects of meteorological, oceanographic, and topographical conditions on the infrasound recordings at IS23 are studied. Five years of infrasound data is analyzed, as recorded by IS23, by using various processing techniques. Contributions within different frequency bands are evaluated. The infrasound detections are explained in terms of the stratospheric winds and ocean wave activity. Understanding and characterization of the low-frequency recordings of IS23 are of importance for successfully including this array for verification of the CTBT.</p>


2019 ◽  
Vol 20 (10) ◽  
pp. 2385
Author(s):  
William E. Antholine

Low-frequency electron paramagnetic resonance (EPR) spectra were obtained for the Co complex of ethylene diamine tetraacetic acid (CoEDTA). It was found that the cobalt hyperfine at geff-mid is better resolved at a low frequency, L-band (1.37 GHz), and not resolved at X-band (9.631 GHz), which is the conventional frequency used for most spectra for metal complexes. Resolved cobalt hyperfine lines lead to additional EPR parameters like A-mid for cobalt and a more-accurate determination of g-mid. Resolved hyperfine lines in the L-band, but not the S-band, spectra were obtained at a concentration of 1 mM. Knowing these additional EPR parameters provides a means to better determine the electron density in the ground state orbital for each cobalt complex, as well as to determine differences upon a change of ligation. If zinc sites can be replaced by cobalt, the cobalt spectra for these sites will enhance the characterization of the zinc sites.


2020 ◽  
Vol 8 (7) ◽  
pp. 1000
Author(s):  
Tata Imnadze ◽  
Ioseb Natradze ◽  
Ekaterine Zhgenti ◽  
Lile Malania ◽  
Natalia Abazashvili ◽  
...  

Yersinia entercolitica is a bacterial species within the genus Yersinia, mostly known as a human enteric pathogen, but also recognized as a zoonotic agent widespread in domestic pigs. Findings of this bacterium in wild animals are very limited. The current report presents results of the identification of cultures of Y. entercolitica from dead bats after a massive bat die-off in a cave in western Georgia. The growth of bacterial colonies morphologically suspected as Yersinia was observed from three intestine tissues of 11 bats belonging to the Miniopterus schreibersii species. These three isolates were identified as Y. enterocolitica based on the API29 assay. No growth of Brucella or Francisella bacteria was observed from tissues of dead bats. Full genomes (a size between 4.6–4.7 Mbp) of the Yersinia strains isolated from bats were analyzed. The phylogenetic sequence analyses of the genomes demonstrated that all strains were nearly identical and formed a distinct cluster with the closest similarity to the environmental isolate O:36/1A. The bat isolates represent low-pathogenicity Biotype 1A strains lacking the genes for the Ail, Yst-a, Ysa, and virulence plasmid pYV, while containing the genes for Inv, YstB, and MyfA. Further characterization of the novel strains cultured from bats can provide a clue for the determination of the pathogenic properties of those strains.


2020 ◽  
Author(s):  
Alain Herique ◽  
Dirk Plettemeier ◽  
Wlodek Kofman ◽  
Yves Rogez ◽  
Hannah Goldberg

<p>The Low Frequency Radar (LFR) on the JUVENTAS CubeSat for HERA / ESA mission to Didymos Binary Asteroid is a unique opportunity to perform direct measurements of its internal structure and regolith. LFR has been developed to fathom asteroid from a small platform. This instrument is inherited from CONSERT/Rosetta and has been redesigned in the frame of the AIDA and HERA ESA mission.</p><p>Onboard JUVENTAS, LFR is operating in monostatic mode to probe down to the first hundreds of meters into the subsurface and to achieve a full tomography of the Didymos' moonlet. Direct observations of the internal structure of asteroids can solve still open basic questions like: Is the body a monolithic piece of rock or a rubble-pile? How high is the porosity? What is the typical size of the constituent blocks? Are these blocks homogeneous or heterogeneous? How is the regolith covering its surface constituted?</p><p>The low frequency aboard the Juventas CubeSat will contribute to the solution of these open and for planetary defense crucial questions.<br>- The first LRF objective is the characterization of the moonlet interior, to identify internal structure and to analyze the size distribution and heterogeneity of constitutive blocks from sub metric to global<br>- The second objective is the estimation of average permittivity and mapping of its spatial variation especially in the crater area.<br>- The same characterization applied to the main of the binary system is among secondary objectives.<br>- Supporting shape modeling and determination of the dynamical state by radar ranging is a further secondary objective.</p><p>This paper will present the instrument concept and measurement strategy, its performances and the expected science return.</p>


1999 ◽  
Vol 354 (1384) ◽  
pp. 701-710 ◽  
Author(s):  
Brian G. Spratt ◽  
Martin C. J. Maiden

Asexual bacterial populations inevitably consist of an assemblage of distinct clonal lineages. However, bacterial populations are not entirely asexual since recombinational exchanges occur, mobilizing small genome segments among lineages and species. The relative contribution of recombination, as opposed to de novo mutation, in the generation of new bacterial genotypes varies among bacterial populations and, as this contribution increases, the clonality of a given population decreases. In consequence, a spectrum of possible population structures exists, with few bacterial species occupying the extremes of highly clonal and completely non–clonal, most containing both clonal and non–clonal elements. The analysis of collections of bacterial isolates, which accurately represent the natural population, by nucleotide sequence determination of multiple housekeeping loci provides data that can be used both to investigate the population structure of bacterial pathogens and for the molecular characterization of bacterial isolates. Understanding the population structure of a given pathogen is important since it impacts on the questions that can be addressed by, and the methods and samples required for, effective molecular epidemiological studies.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-99
Author(s):  
Abu Zakir Morshed ◽  
Sheikh Shakib ◽  
Tanzim Jahin

Corrosion of reinforcement is an important durability concern for the structures exposed to coastal regions. Since corrosion of reinforcement involves long periods of time, impressed current technique is usually used to accelerate the corrosion of reinforcement in laboratories. Characterization of impressed current technique was the main focus of this research,which involved determination of optimum chloride content and minimum immersion time of specimens for which the application of Faraday’s law could be efficient. To obtain optimum chloride content, the electrolytes in the corrosion cell were prepared similar to that of concrete pore solutions. Concrete prisms of 200 mm by 200 mm by 300 mm were used to determine the minimum immersion time for saturation. It was found that the optimum chloride content was 35 gm/L and the minimum immersion time for saturation was 140 hours. Accounting the results, a modified expression based on Faraday’s law was proposed to calculate weight loss due to corrosion. Journal of Engineering Science 11(1), 2020, 93-99


2008 ◽  
Vol 2 (2) ◽  
pp. 155-177 ◽  
Author(s):  
Eugene Brently Young
Keyword(s):  

Eternal return is the paradox that accounts for the interplay between difference and repetition, a dynamic at the heart of Deleuze's philosophy, and Blanchot's approach to this paradox, even and especially through what it elides, further illuminates it. Deleuze draws on Blanchot's characterisations of difference, forgetting, and the unlivable to depict the ‘sense’ produced via eternal return, which, for Blanchot, is where repetition implicates or ‘carries’ pure difference. However, for Deleuze, difference and the unlivable are also developed by the living repetition or ‘contraction’ of habit, which results in his distinctive characterization of ‘force’, ‘levity’, and sense in eternal return.


Sign in / Sign up

Export Citation Format

Share Document