bacterial glycosylation
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Eray Bozkurt ◽  
Irem Cagil ◽  
Ebru Kehribar ◽  
Musa Isilak ◽  
Urartu Ozgur Safak Seker

Protein glycosylation is one of the most crucial and common post-translational modifications. It plays a fate-determining role and can alter many properties of proteins, making it an interesting for many biotechnology applications. The discovery of bacterial glycosylation mechanisms, opened a new perspective and transfer of C.jejuni N-linked glycosylation into laboratory work-horse E. coli increased research pace in the field exponentially. It has been previously showed that utilizing N-Linked Glycosylation, certain recombinant proteins have been furnished with improved features, such as stability and solubility. In this study, we utilized N-linked Glycosylation to glycosylate alkaline phosphatase (ALP) enzyme in E. coli and investigate the effects of glycosylation on an enzyme. Considering the glycosylation mechanism is highly dependent on the acceptor protein, ALP constructs carrying glycosylation tag at different locations of the gene has been created and glycosylation rates have been calculated. The most glycosylated construct has been selected for comparison with the native enzyme. We investigated the performance of glycosylated ALP in terms of its thermostability, proteolytic stability, tolerance to suboptimal pH and under denaturing conditions. Studies showed that glycosylated ALP performed remarkably better at optimal and harsh conditions Therefore, N-linked Glycosylation mechanism can be employed for enzyme engineering purposes and is a useful tool for industrial applications that require enzymatic activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liubov Yakovlieva ◽  
Julius A. Fülleborn ◽  
Marthe T. C. Walvoort

Glycosylation is a ubiquitous process that is universally conserved in nature. The various products of glycosylation, such as polysaccharides, glycoproteins, and glycolipids, perform a myriad of intra- and extracellular functions. The multitude of roles performed by these molecules is reflected in the significant diversity of glycan structures and linkages found in eukaryotes and prokaryotes. Importantly, glycosylation is highly relevant for the virulence of many bacterial pathogens. Various surface-associated glycoconjugates have been identified in bacteria that promote infectious behavior and survival in the host through motility, adhesion, molecular mimicry, and immune system manipulation. Interestingly, bacterial glycosylation systems that produce these virulence factors frequently feature rare monosaccharides and unusual glycosylation mechanisms. Owing to their marked difference from human glycosylation, bacterial glycosylation systems constitute promising antibacterial targets. With the rise of antibiotic resistance and depletion of the antibiotic pipeline, novel drug targets are urgently needed. Bacteria-specific glycosylation systems are especially promising for antivirulence therapies that do not eliminate a bacterial population, but rather alleviate its pathogenesis. In this review, we describe a selection of unique glycosylation systems in bacterial pathogens and their role in bacterial homeostasis and infection, with a focus on virulence factors. In addition, recent advances to inhibit the enzymes involved in these glycosylation systems and target the bacterial glycan structures directly will be highlighted. Together, this review provides an overview of the current status and promise for the future of using bacterial glycosylation to develop novel antibacterial strategies.


2020 ◽  
Vol 6 (12) ◽  
pp. 3247-3259
Author(s):  
Karen D. Moulton ◽  
Adedunmola P. Adewale ◽  
Hallie A. Carol ◽  
Sage A. Mikami ◽  
Danielle H. Dube

Author(s):  
Ameera Raudah Ahmad Izaham ◽  
Nichollas E. Scott

ABSTRACTMass spectrometry has become an indispensable tool for the characterisation of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. While glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses prior to database searching. Utilising this approach, we demonstrate how wide tolerance searching can be used to compare glycan utilisation across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.


2019 ◽  
Vol 47 (6) ◽  
pp. 1569-1579 ◽  
Author(s):  
Mariano Prado Acosta ◽  
Bernd Lepenies

Bacterial surfaces are rich in glycoconjugates that are mainly present in their outer layers and are of great importance for their interaction with the host innate immune system. The innate immune system is the first barrier against infection and recognizes pathogens via conserved pattern recognition receptors (PRRs). Lectins expressed by innate immune cells represent an important class of PRRs characterized by their ability to recognize carbohydrates. Among lectins in innate immunity, there are three major classes including the galectins, siglecs, and C-type lectin receptors. These lectins may contribute to initial recognition of bacterial glycans, thus providing an early defence mechanism against bacterial infections, but they may also be exploited by bacteria to escape immune responses. In this review, we will first exemplify bacterial glycosylation systems; we will then describe modes of recognition of bacterial glycans by lectins in innate immunity and, finally, we will briefly highlight how bacteria have found ways to exploit these interactions to evade immune recognition.


2011 ◽  
Vol 286 (43) ◽  
pp. 37887-37894 ◽  
Author(s):  
Isabelle Hug ◽  
Blake Zheng ◽  
Bela Reiz ◽  
Randy M. Whittal ◽  
Messele A. Fentabil ◽  
...  

Microbiology ◽  
2006 ◽  
Vol 152 (6) ◽  
pp. 1575-1580 ◽  
Author(s):  
Paul G. Hitchen ◽  
Anne Dell

Glycosylated proteins are ubiquitous components of eukaryote cellular surfaces, where the glycan moieties are implicated in a wide range of cell–cell recognition events. Once thought to be restricted to eukaryotes, glycosylation is now being increasingly reported in prokaryotes. Many of these discoveries have grown from advances in analytical technologies and genome sequencing. This review highlights the capabilities of high-sensitivity mass spectrometry for carbohydrate structure determination of bacterial glycoproteins and the emergence of glycoproteomic strategies that have evolved from proteomics and genomics for the functional analysis of bacterial glycosylation.


Sign in / Sign up

Export Citation Format

Share Document