Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta

2003 ◽  
Vol 160 (10) ◽  
pp. 1193-1202 ◽  
Author(s):  
Leland S. Jahnke ◽  
Andrea L. White
1990 ◽  
Vol 26 (3) ◽  
pp. 479-484 ◽  
Author(s):  
Maurice E. Levasseur ◽  
Jean-Claude Morissette ◽  
Radovan Popovic ◽  
Paul J. Harrison

2015 ◽  
Vol 67 (4) ◽  
pp. 1303-1312 ◽  
Author(s):  
Musa Kavas ◽  
Oya Akça ◽  
Ufuk Akçay ◽  
Begüm Peksel ◽  
Seçkin Eroğlu ◽  
...  

In this study, the effects of long-term NaCl treatment were investigated in two cultivars of peanut designated as drought-resistant and drought-sensitive. Growth parameters, changes in the concentrations of MDA, H2O2 and proline, and the activities of antioxidant enzymes were determined under salinity stress. Growth parameters indicated the superiority of cv. Florispan to cv. Gazipa?a under milder salinity stress treatment. However, comparative analysis of the two cultivars showed that MDA, H2O2, ion leakage levels and photosystem II activities were not significantly different, except for the proline activity, which increased only in Florispan leaf tissues under 100 mM salt treatment. Among the processes that govern the tolerance in peanut tissues, proline level and the activity of glutathione reductase (GR) appeared to be only components that play an important part in salt stress protection.


2017 ◽  
Vol 189 ◽  
pp. 159-169 ◽  
Author(s):  
E. Bergami ◽  
S. Pugnalini ◽  
M.L. Vannuccini ◽  
L. Manfra ◽  
C. Faleri ◽  
...  

Biologia ◽  
2014 ◽  
Vol 69 (4) ◽  
Author(s):  
Mostafa Modarresi ◽  
Fatemeh Moradian ◽  
Ghorban Nematzadeh

AbstractSalinity influences the agricultural production all over the world. This constrain, similar to others biotic and abiotic stresses generate the reactive oxygen species such as superoxide, hydrogen peroxide and hydroxyl radicals. In the evolution process of halophyte plants the mechanisms to detoxify ROS, such as antioxidant enzymes, have been developed. Aeluropus littoralis is a special halophyte that selected to our research, so the plants treated with NaCl at different salt concentration (0, 250, 450 and 650 mM) for a period 45 days. Leaves and roots (separately) collected and their proteins extracted for superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) activity assay. Meanwhile the electrolyte leakage of leaves analyzed and increased at 450 and 650 mM of NaCl concentrations. Superoxide dismutase and catalase showed same pattern for changing in enzymatic activities (increasing activity by salt stress in roots and decreasing in shoot at 450 and 650 mM stress), also peroxidase and ascorbate peroxidase activity almost increased in all stress conditions.


2020 ◽  
Vol 8 (6) ◽  
pp. 890
Author(s):  
Guligena Muhetaer ◽  
Senavirathna M.D.H. Jayasanka ◽  
Takeshi Fujino

Two harmful cyanobacteria species (Phormidium ambiguum and Microcystis aeruginosa) were exposed to diurnal light-intensity variation to investigate their favorable and stressed phases during a single day. The photosynthetically active radiation (PAR) started at 0 µmol·m−2·s−1 (06:00 h), increased by ~25 µmol·m−2·s−1 or ~50 µmol·m−2·s−1 every 30 min, peaking at 300 µmol·m−2·s−1 or 600 µmol·m−2·s−1 (12:00 h), and then decreased to 0 µmol·m−2·s−1 (by 18:00 h). The H2O2 and antioxidant activities were paralleled to light intensity. Higher H2O2 and antioxidant levels (guaiacol peroxidase, catalase (CAT), and superoxidase dismutase) were observed at 600 µmol·m−2·s−1 rather than at 300 µmol·m−2·s−1. Changes in antioxidant levels under each light condition differed between the species. Significant correlations were observed between antioxidant activities and H2O2 contents for both species, except for the CAT activity of P. ambiguum at 300 µmol·m−2·s−1. Under each of the conditions, both species responded proportionately to oxidative stress. Even under maximum light intensities (300 µmol·m−2·s−1 or 600 µmol·m−2·s−1 PAR intensity), neither species was stressed. Studies using extended exposure durations are warranted to better understand the growth performance and long-term physiological responses of both species.


Sign in / Sign up

Export Citation Format

Share Document