Metabolic and Functional Properties of Lactic Acid Bacteria in the Gastro-intestinal Ecosystem: A comparative in vitro Studybetween Bacteria of Intestinal and Fermented Food Origin

2001 ◽  
Vol 24 (2) ◽  
pp. 218-226 ◽  
Author(s):  
D. Haller ◽  
H. Colbus ◽  
M.G. Gänzle ◽  
P. Scherenbacher ◽  
C. Bode ◽  
...  
2020 ◽  
Vol 8 (12) ◽  
pp. 1895
Author(s):  
Vera Fraberger ◽  
Claudia Ammer ◽  
Konrad J. Domig

Preventing food spoilage without the addition of chemical food additives, while increasing functional properties of wheat-based bakery products, is an increasing demand by the consumers and a challenge for the food industry. Within this study, lactic acid bacteria (LAB) isolated from sourdough were screened in vitro for the ability to utilize the typical wheat carbohydrates, for their antimicrobial and functional properties. The dual culture overlay assay revealed varying levels of inhibition against the examined fungi, with Lactiplantibacillus plantarum S4.2 and Lentilactobacillusparabuchneri S2.9 exhibiting the highest suppression against the indicator strains Fusarium graminearum MUCL43764, Aspergillus fumigatus, A. flavus MUCL11945, A. brasiliensis DSM1988, and Penicillium roqueforti DSM1079. Furthermore, the antifungal activity was shown to be attributed mainly to the activity of acids produced by LAB. The antibacillus activity was evaluated by the spot-on-the-lawn method revealing a high inhibition potential of the majority of LAB isolated from sourdough against Bacillus cereus DSM31, B. licheniformis DSM13, B. subtilis LMG7135, and B. subtilis S15.20. Furthermore, evaluating the presence of the glutamate decarboxylase gen in LAB isolates by means of PCR showed a strain dependency of a potential GABA production. Finally, due to improved functional activities, LAB isolated from sourdoughs exhibit promising characteristics for the application as natural preservatives in wheat-based bakery products.


2012 ◽  
Vol 5 ◽  
pp. BCI.S10529 ◽  
Author(s):  
Shinsuke Kuwaki ◽  
Nobuyoshi Nakajima ◽  
Hidehiko Tanaka ◽  
Kohji Ishihara

A plant-based paste fermented by lactic acid bacteria and yeast (fermented paste) was made from various plant materials. The paste was made of fermented food by applying traditional food-preservation techniques, that is, fermentation and sugaring. The fermented paste contained major nutrients (carbohydrates, proteins, and lipids), 18 kinds of amino acids, and vitamins (vitamin A, B1 B2, B6, B12, E, K, niacin, biotin, pantothenic acid, and folic acid). It contained five kinds of organic acids, and a large amount of dietary fiber and plant phytochemicals. Sucrose from brown sugar, used as a material, was completely resolved into glucose and fructose. Some physiological functions of the fermented paste were examined in vitro. It was demonstrated that the paste possessed antioxidant, antihypertensive, antibacterial, anti-inflammatory, anti-allergy and anti-tyrosinase activities in vitro. It was thought that the fermented paste would be a helpful functional food with various nutrients to help prevent lifestyle diseases.


2019 ◽  
Vol 7 (12) ◽  
pp. 709 ◽  
Author(s):  
Jihen Missaoui ◽  
Dalila Saidane ◽  
Ridha Mzoughi ◽  
Fabio Minervini

Microorganisms inhabiting fermented foods represent the main link between the consumption of this food and human health. Although some fermented food is a reservoir of potentially probiotic microorganisms, several foods are still unexplored. This study aimed at characterizing the probiotic potential of lactic acid bacteria isolated from zgougou, a fermented matrix consisting of a watery mixture of Aleppo pine′s seeds. In vitro methods were used to characterize the safety, survival ability in typical conditions of the gastrointestinal tract, and adherence capacity to surfaces, antimicrobial, and antioxidant activities. Strains belonged to the Lactobacillus plantarum group and Enterococcus faecalis showed no DNase, hemolytic, and gelatinase activities. In addition, their susceptibility to most of the tested antibiotics, satisfied some of the safety prerequisites for their potential use as probiotics. All the strains tolerated low pH, gastrointestinal enzymes, and bile salts. They displayed a good antibacterial activity and antibiofilm formation against 10 reference bacterial pathogens, especially when used as a cell-free supernatant. Furthermore, the lactic acid bacteria (LAB) strains inhibited the growth of Aspergillus flavus and Aspergillus carbonarius. Finally, they had good antioxidant activity, although depending on the strain. Overall, the results of this work highlight that zgougou represents an important reservoir of potentially probiotic LAB. Obviously, future studies should be addressed to confirm the health benefits of the LAB strains.


LWT ◽  
2019 ◽  
Vol 115 ◽  
pp. 108455 ◽  
Author(s):  
Ting Cai ◽  
Haizhen Wu ◽  
Jialiang Qin ◽  
Jinnan Qiao ◽  
Yuanxin Yang ◽  
...  

Anaerobe ◽  
2010 ◽  
Vol 16 (4) ◽  
pp. 321-326 ◽  
Author(s):  
Xiao-Hua Guo ◽  
Jong-Man Kim ◽  
Hyang-Mi Nam ◽  
Shin-Young Park ◽  
Jae-Myung Kim

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 906
Author(s):  
Iuliana Maria Enache ◽  
Aida Mihaela Vasile ◽  
Elena Enachi ◽  
Vasilica Barbu ◽  
Nicoleta Stănciuc ◽  
...  

Cornus mas was used in this study as a rich source of health-promoting bioactives. The cornelian cherries were used to extract the polyphenols and anthocyanins. The chromatographic profile of the Cornus mas fruit extract revealed the presence of several anthocyanins, mainly delphinidin, cyanidin and pelargonidin glycosides. The extract was co-microencapsulated with Lactobacillus casei ssp. paracasei in a unique combination of whey protein isolates, inulin and chitosan by freeze-drying, with an encapsulation efficiency of 89.16 ± 1.23% for anthocyanins and 80.33 ± 0.44% for lactic acid bacteria. The pink-red colored powder showed a total anthocyanins content of 19.86 ± 1.18 mg cyanidin-3-glucoside/g dry weight (DW), yielding an antioxidant activity of 54.43 ± 0.73 mMol Trolox/g DW. The viable cells were 9.39 × 109 colony forming units (CFU)/g DW. The confocal microscopy analysis revealed the microencapsulated powder as a complex one, with several large formations containing smaller aggregates, consisting of the lactic acid bacteria cells, the cornelian cherries’ bioactive compounds and the biopolymers. The powder was tested for stability over 90 days, showing a decrease of 50% in anthocyanins and 37% in flavonoids content, with no significant changes in antioxidant activity and CFU. The powder showed a significant inhibitory effect against the α-amylase of 89.72 ± 1.35% and of 24.13 ± 0.01% for α-glucosidase. In vitro digestibility studies showed a significant release of anthocyanins in gastric juice, followed by a decrease in intestinal simulated conditions. The functional properties of the powder were tested by addition into a yogurt, highlighting a higher and more stable antioxidant activity at storage when compared to the control.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fanny Canon ◽  
Mahendra Mariadassou ◽  
Marie-Bernadette Maillard ◽  
Hélène Falentin ◽  
Sandrine Parayre ◽  
...  

Designing bacterial co-cultures adapted to ferment mixes of vegetal and animal resources for food diversification and sustainability is becoming a challenge. Among bacteria used in food fermentation, lactic acid bacteria (LAB) are good candidates, as they are used as starter or adjunct in numerous fermented foods, where they allow preservation, enhanced digestibility, and improved flavor. We developed here a strategy to design LAB co-cultures able to ferment a new food made of bovine milk and lupin flour, consisting in: (i) in silico preselection of LAB species for targeted carbohydrate degradation; (ii) in vitro screening of 97 strains of the selected species for their ability to ferment carbohydrates and hydrolyze proteins from milk and lupin and clustering strains that displayed similar phenotypes; and (iii) assembling strains randomly sampled from clusters that showed complementary phenotypes. The designed co-cultures successfully expressed the targeted traits i.e., hydrolyzed proteins and degraded raffinose family oligosaccharides of lupin and lactose of milk in a large range of concentrations. They also reduced an off-flavor-generating volatile, hexanal, and produced various desirable flavor compounds. Most of the strains in co-cultures achieved higher cell counts than in monoculture, suggesting positive interactions. This work opens new avenues for the development of innovative fermented food products based on functionally complementary strains in the world-wide context of diet diversification.


2017 ◽  
Vol 4 (3) ◽  
pp. 187-197 ◽  
Author(s):  
Gunajit Goswami ◽  
Sudipta Sankar Bora ◽  
Assma Parveen ◽  
Robin Chandra Boro ◽  
Madhumita Barooah

Sign in / Sign up

Export Citation Format

Share Document