scholarly journals Fermented Seeds (“Zgougou”) from Aleppo Pine as a Novel Source of Potentially Probiotic Lactic Acid Bacteria

2019 ◽  
Vol 7 (12) ◽  
pp. 709 ◽  
Author(s):  
Jihen Missaoui ◽  
Dalila Saidane ◽  
Ridha Mzoughi ◽  
Fabio Minervini

Microorganisms inhabiting fermented foods represent the main link between the consumption of this food and human health. Although some fermented food is a reservoir of potentially probiotic microorganisms, several foods are still unexplored. This study aimed at characterizing the probiotic potential of lactic acid bacteria isolated from zgougou, a fermented matrix consisting of a watery mixture of Aleppo pine′s seeds. In vitro methods were used to characterize the safety, survival ability in typical conditions of the gastrointestinal tract, and adherence capacity to surfaces, antimicrobial, and antioxidant activities. Strains belonged to the Lactobacillus plantarum group and Enterococcus faecalis showed no DNase, hemolytic, and gelatinase activities. In addition, their susceptibility to most of the tested antibiotics, satisfied some of the safety prerequisites for their potential use as probiotics. All the strains tolerated low pH, gastrointestinal enzymes, and bile salts. They displayed a good antibacterial activity and antibiofilm formation against 10 reference bacterial pathogens, especially when used as a cell-free supernatant. Furthermore, the lactic acid bacteria (LAB) strains inhibited the growth of Aspergillus flavus and Aspergillus carbonarius. Finally, they had good antioxidant activity, although depending on the strain. Overall, the results of this work highlight that zgougou represents an important reservoir of potentially probiotic LAB. Obviously, future studies should be addressed to confirm the health benefits of the LAB strains.

Dairy ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 202-232
Author(s):  
Raphael D. Ayivi ◽  
Rabin Gyawali ◽  
Albert Krastanov ◽  
Sulaiman O. Aljaloud ◽  
Mulumebet Worku ◽  
...  

Research on lactic acid bacteria has confirmed how specific strains possess probiotic properties and impart unique sensory characteristics to food products. The use of probiotic lactic acid bacteria (LAB) in many food products, thus confers various health benefits to humans when they are frequently consumed in adequate amounts. The advent of functional food or the concept of nutraceuticals objectively places more emphasis on seeking alternatives to limit the use of medications thus promoting the regular consumption of fermented foods. Probiotic use has thus been recommended to fulfill the role of nutraceuticals, as no side effects on human health have been reported. Probiotics and lactic acid bacteria can boost and strengthen the human immune system, thereby increasing its resistance against numerous disease conditions. Consumer safety and confidence in dairy and fermented food products and the desire of the food industry to meet the sensory and health needs of consumers, has thus increased the demand for probiotic starter cultures with exceptional performance coupled with health benefiting properties. The potential of probiotic cultures and lactic acid bacteria in many industrial applications including fermented food products generally affects product characteristics and also serves as health-promoting foods for humans. The alleviation of lactose intolerance in many populations globally has been one of the widely accepted health claims attributed to probiotics and lactic acid bacteria, although many diseases have been treated with probiotic lactic acid bacteria and have been proven with scientific and clinical studies. The aim of our review was to present information related to lactic acid bacteria, the new classification and perspectives on industrial applications with a special emphasis on food safety and human health.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fanny Canon ◽  
Mahendra Mariadassou ◽  
Marie-Bernadette Maillard ◽  
Hélène Falentin ◽  
Sandrine Parayre ◽  
...  

Designing bacterial co-cultures adapted to ferment mixes of vegetal and animal resources for food diversification and sustainability is becoming a challenge. Among bacteria used in food fermentation, lactic acid bacteria (LAB) are good candidates, as they are used as starter or adjunct in numerous fermented foods, where they allow preservation, enhanced digestibility, and improved flavor. We developed here a strategy to design LAB co-cultures able to ferment a new food made of bovine milk and lupin flour, consisting in: (i) in silico preselection of LAB species for targeted carbohydrate degradation; (ii) in vitro screening of 97 strains of the selected species for their ability to ferment carbohydrates and hydrolyze proteins from milk and lupin and clustering strains that displayed similar phenotypes; and (iii) assembling strains randomly sampled from clusters that showed complementary phenotypes. The designed co-cultures successfully expressed the targeted traits i.e., hydrolyzed proteins and degraded raffinose family oligosaccharides of lupin and lactose of milk in a large range of concentrations. They also reduced an off-flavor-generating volatile, hexanal, and produced various desirable flavor compounds. Most of the strains in co-cultures achieved higher cell counts than in monoculture, suggesting positive interactions. This work opens new avenues for the development of innovative fermented food products based on functionally complementary strains in the world-wide context of diet diversification.


2019 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Nurul Octavia Wasis ◽  
Nyoman Semadi Antara ◽  
Ida Bagus Wayan Gunam

Tabah bamboo shoot pickle is one of the fermented food which is the source of lactic acid bacteria.  Lactic acid bacteria (LAB) is beneficial to health because it has the ability as a probiotic. Lactic acid bacteria that have probiotic criteria should have resistance to low pH and bile salts. This study aims to determine isolates of lactic acid bacteria isolated from tabah bamboo shoot pickle resistant to low pH and bile salts (NaDC). Lactic acid bacteria were tested to low pH by using MRS broth that have different pH (pH 2, pH 3, pH 4 and pH 6.2 as a control) incubated at 37ºC for 3 hours. isolates were survive in low pH then continued in bile salt resistance test with 0.3% bile salt concentration for 15 minutes, 30 minutes, 45 minutes, 60 minutes and 24 hours. The results showed that three isolates out of 88 isolates had ability to grow in low pH and in medium supplemented by NaDC 0,3%. The isolates are AR 3057, AR 3101 and AR 6152 which can be used as candidat of  probiotic. Keywords : Tabah bamboo shoot pickle, lactic acid bacteria, probiotic, low pH, bile salt


2016 ◽  
Vol 79 (11) ◽  
pp. 1919-1928 ◽  
Author(s):  
SHUANG XU ◽  
TAIGANG LIU ◽  
CHIRAZ AKOREDE IBINKE RADJI ◽  
JING YANG ◽  
LANMING CHEN

ABSTRACT In this study, we analyzed Chinese traditional fermented food to isolate and identify new lactic acid bacteria (LAB) strains with novel functional properties and to evaluate their cellular antioxidant and bile salt hydrolase (BSH) activities in vitro. A sequential screening strategy was developed to efficiently isolate and obtain 261 LAB strains tolerant of bile salt, acid, and H2O2 from nine Chinese traditional fermented foods. Among these strains, 70 were identified as having 2,2-diphenyl-1-picrylhydrazyl radical scavenging and/or BSH activity. These strains belonged to eight species: Enterococcus faecium (33% of the strains), Lactobacillus plantarum (26%), Leuconostoc mesenteroides (14%), Pediococcus pentosaceus (6%), Enterococcus durans (9%), Lactobacillus brevis (9%), Pediococcus ethanolidurans (3%), and Lactobacillus casei (1%). The pulsed-field gel electrophoresis genome fingerprinting profiles of these strains revealed 38 distinct pulsotypes, indicating a high level of genomic diversity among the tested strains. Twenty strains were further evaluated for hydroxyl radical scavenging activity, reducing power, and ferrous ion chelating activity exerted by both viable intact cells and/or intracellular cell-free extracts. Some strains, such as L. plantarum D28 and E. faecium B28, had high levels of both cellular antioxidant and BSH activities in vitro. These strains are promising probiotic components for health-promoting functional foods.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Edoardo Pasolli ◽  
Francesca De Filippis ◽  
Italia E. Mauriello ◽  
Fabio Cumbo ◽  
Aaron M. Walsh ◽  
...  

Abstract Lactic acid bacteria (LAB) are fundamental in the production of fermented foods and several strains are regarded as probiotics. Large quantities of live LAB are consumed within fermented foods, but it is not yet known to what extent the LAB we ingest become members of the gut microbiome. By analysis of 9445 metagenomes from human samples, we demonstrate that the prevalence and abundance of LAB species in stool samples is generally low and linked to age, lifestyle, and geography, with Streptococcus thermophilus and Lactococcus lactis being most prevalent. Moreover, we identify genome-based differences between food and gut microbes by considering 666 metagenome-assembled genomes (MAGs) newly reconstructed from fermented food microbiomes along with 154,723 human MAGs and 193,078 reference genomes. Our large-scale genome-wide analysis demonstrates that closely related LAB strains occur in both food and gut environments and provides unprecedented evidence that fermented foods can be indeed regarded as a possible source of LAB for the gut microbiome.


2019 ◽  
Vol 7 (4) ◽  
pp. 109 ◽  
Author(s):  
Chang-Ho Kang ◽  
Seul Hwa Han ◽  
Jin-Seong Kim ◽  
YongGyeong Kim ◽  
Yulah Jeong ◽  
...  

In this study, lactic acid bacteria (LAB) with antioxidative and probiotic activities were isolated from the vaginas of Korean women and from fermented food. Among 34 isolated LAB strains, four strains (MG4221, MG4231, MG4261, and MG4270) exhibited inhibitory activity against nitric oxide production. The MG4221 and MG4270 strains were identified as Lactobacillus plantarum, and MG4231 and MG4261 were identified as Lactobacillus fermentum. These strains were able to tolerate pepsin and pancreatin, which is required for probiotic potential. The antioxidant effects of culture filtrates obtained from selected strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity. Most of the culture filtrates had effective DPPH scavenging activity.In conclusion, the selected strains have significant activities and are potentially applicable to the development of functional foods. These strains might also contribute to the prevention and control of several diseases associated with oxidative stress, when used as functional probiotics.


Sign in / Sign up

Export Citation Format

Share Document