Leaf nitrogen content and photosynthetic activity in relation to soil nutrient availability in coastal and mountain fynbos plants (South Africa)

2002 ◽  
Vol 3 (4) ◽  
pp. 329-337 ◽  
Author(s):  
Margaretha Herppich ◽  
Werner Bernhard Herppich ◽  
Dieter Joachim von Willert
2021 ◽  
Vol 13 (4) ◽  
pp. 739
Author(s):  
Jiale Jiang ◽  
Jie Zhu ◽  
Xue Wang ◽  
Tao Cheng ◽  
Yongchao Tian ◽  
...  

Real-time and accurate monitoring of nitrogen content in crops is crucial for precision agriculture. Proximal sensing is the most common technique for monitoring crop traits, but it is often influenced by soil background and shadow effects. However, few studies have investigated the classification of different components of crop canopy, and the performance of spectral and textural indices from different components on estimating leaf nitrogen content (LNC) of wheat remains unexplored. This study aims to investigate a new feature extracted from near-ground hyperspectral imaging data to estimate precisely the LNC of wheat. In field experiments conducted over two years, we collected hyperspectral images at different rates of nitrogen and planting densities for several varieties of wheat throughout the growing season. We used traditional methods of classification (one unsupervised and one supervised method), spectral analysis (SA), textural analysis (TA), and integrated spectral and textural analysis (S-TA) to classify the images obtained as those of soil, panicles, sunlit leaves (SL), and shadowed leaves (SHL). The results show that the S-TA can provide a reasonable compromise between accuracy and efficiency (overall accuracy = 97.8%, Kappa coefficient = 0.971, and run time = 14 min), so the comparative results from S-TA were used to generate four target objects: the whole image (WI), all leaves (AL), SL, and SHL. Then, those objects were used to determine the relationships between the LNC and three types of indices: spectral indices (SIs), textural indices (TIs), and spectral and textural indices (STIs). All AL-derived indices achieved more stable relationships with the LNC than the WI-, SL-, and SHL-derived indices, and the AL-derived STI was the best index for estimating the LNC in terms of both calibration (Rc2 = 0.78, relative root mean-squared error (RRMSEc) = 13.5%) and validation (Rv2 = 0.83, RRMSEv = 10.9%). It suggests that extracting the spectral and textural features of all leaves from near-ground hyperspectral images can precisely estimate the LNC of wheat throughout the growing season. The workflow is promising for the LNC estimation of other crops and could be helpful for precision agriculture.


2021 ◽  
Vol 13 (4) ◽  
pp. 2226
Author(s):  
Joisman Fachini ◽  
Thais Rodrigues Coser ◽  
Alyson Silva de Araujo ◽  
Ailton Teixeira do Vale ◽  
Keiji Jindo ◽  
...  

The thermochemical transformation of sewage sludge (SS) to biochar (SSB) allows exploring the advantages of SS and reduces possible environmental risks associated with its use. Recent studies have shown that SSB is nutrient-rich and may replace mineral fertilizers. However, there are still some questions to be answered about the residual effect of SSB on soil nutrient availability. In addition, most of the previous studies were conducted in pots or soil incubations. Therefore, the residual effect of SSB on soil properties in field conditions remains unclear. This study shows the results of nutrient availability and uptake as well as maize yield the third cropping of a three-year consecutive corn cropping system. The following treatments were compared: (1) control: without mineral fertilizer and biochar; (2) NPK: with mineral fertilizer; (3) SSB300: with biochar produced at 300 °C; (4) SSB300+NPK; (5) SSB500: with biochar produced at 500 °C; and (6) SSB500+NPK. The results show that SSB has one-year residual effects on soil nutrient availability and nutrient uptake by maize, especially phosphorus. Available soil P contents in plots that received SSB were around five times higher than the control and the NPK treatments. Pyrolysis temperature influenced the SSB residual effect on corn yield. One year after suspending the SSB application, SSB300 increased corn yield at the same level as the application of NPK. SSB300 stood out and promoted higher grain yield in the residual period (8524 kg ha−1) than SSB500 (6886 kg ha−1). Regardless of pyrolysis temperature, biochar boosted the mineral fertilizer effect resulting in higher grain yield than the exclusive application of NPK. Additional long-term studies should be focused on SSB as a slow-release phosphate fertilizer.


2021 ◽  
Author(s):  
Amanda E. Knauf ◽  
Creighton M. Litton ◽  
Rebecca J. Cole ◽  
Jed P. Sparks ◽  
Christian P. Giardina ◽  
...  

Pedosphere ◽  
2016 ◽  
Vol 26 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Adel Rabie A. USMAN ◽  
Mohammad I. AL-WABEL ◽  
Yong S. OK ◽  
Abdulaziz AL-HARBI ◽  
Mahmoud WAHB-ALLAH ◽  
...  

2012 ◽  
Vol 82 ◽  
pp. 37-42 ◽  
Author(s):  
Priit Kupper ◽  
Gristin Rohula ◽  
Liina Saksing ◽  
Arne Sellin ◽  
Krista Lõhmus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document