Molecular biological methods for studying the gut microbiota: the EU human gut flora project

2002 ◽  
Vol 87 (6) ◽  
pp. 203-211 ◽  
Author(s):  
Blaut M.* ◽  
M.D. Collins ◽  
G.W. Welling ◽  
J. Doré ◽  
J. van Loo ◽  
...  
2020 ◽  
Author(s):  
Shenghui Li ◽  
Siyi Zhang ◽  
Bo Li ◽  
Shanshan Sha ◽  
Jian Kang ◽  
...  

AbstractThe laboratorial mouse harbors a unique gut microbiota with potential value for human microbiota-associated studies. Mouse gut microbiota has been explored at the genus and species levels, but features rarely been showed at the strain level. The identification of 833,051 and 658,438 nonredundant genes of faeces and gut content samples from the laboratorial C57/BL mice showed over half of these genes were newly found compared to the previous mouse gut microbial gene catalogue. Metagenome-assembled genomes (MAGs) was used to reconstruct 46 nonredundant MAGs belonging to uncultured specieses. These MAGs included members across all phyla in mouse gut (i.e. Firmicutes, Bacteroidetes, Proteobacteria, Deferribacteres, Verrucomicrobia, and Tenericutes) and allowed a strain-level delineating of the mouse gut microbiota. Comparison of MAGs with human gut colonies revealed distinctive genomic and functional characteristics of mouse’s Bacteroidetes and Firmicutes strains. Genomic characteristics of rare phyla in mouse gut microbiota were demonstrated by MAG approach, including strains of Mucispirillum schaedleri, Parasutterella excrementihominis, Helicobacter typhlonius, and Akkermansia muciniphila.ImportanceThe identification of nonredundant genes suggested the existence of unknown microbes in the mouse gut samples. The metagenome-assembled genomes (MAGs) instantiated the specificity of mouse gut species and revealed an intestinal microbial correlation between mouse and human. The cultivation of faeces and gut contents sample validated the existence of MAGs and estimate their accuracy. Full-length 16S ribosomal RNA gene sequencing enabled taxonomic characterization. This study highlighted a unique ecosystem in the gut of laboratorial mice that obviously differed with the human gut flora at the strain level. The outcomes may be beneficial to researches based on laboratorial mouse models.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

2017 ◽  
Author(s):  
EM Pferschy-Wenzig ◽  
A Roßmann ◽  
K Koskinen ◽  
H Abdel-Aziz ◽  
C Moissl-Eichinger ◽  
...  

2020 ◽  
Author(s):  
Y Liu ◽  
AL Heath ◽  
B Galland ◽  
N Rehrer ◽  
L Drummond ◽  
...  

© 2020 American Society for Microbiology. Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, β-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order β-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and β-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula. Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology. This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.


2019 ◽  
Author(s):  
Robin Mesnage ◽  
Franziska Grundler ◽  
Andreas Schwiertz ◽  
Yvon Le Maho ◽  
Françoise Wilhelmi de Toledo

2019 ◽  
Vol 16 (12) ◽  
pp. 1348-1353
Author(s):  
Huanhuan Qu ◽  
Baixue Li ◽  
Jingyi Yang ◽  
Huaiwen Liang ◽  
Meixia Li ◽  
...  

Background: Disaccharide core 1 (Galβ1-3GalNAc) is a common O-glycan structure in nature. Biochemical studies have confirmed that the formation of the core 1 structure is an important initial step in O-glycan biosynthesis and it is of great importance for human body. Objective: Our study will provide meaningful and useful sights for O-glycan synthesis and their bioassay. And all the synthetic glycosides would be used as intermediate building blocks in the scheme developed for oligosaccharide construction. Methods: In this article, we firstly used chemical procedures to prepare core 1 and its derivative, and a novel disaccharide was efficiently synthesized. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, 13C NMR and MS. Then we employed three human gut symbionts belonging to Bacteroidetes, a predominantphyla in the distal gut, as models to study the bioactivity of core 1 and its derivative on human gut microbiota. Results: According to our results, both core 1 and derivative could support the growth of B. fragilis, especially the core 1 derivative, while failed to support the growth of B. thetaiotaomicron and B. ovatus. Conclusion: This suggested that the B. fragilis might have the specificity glycohydrolase to cut the glycosidic bond for acquiring monosaccharide.


Sign in / Sign up

Export Citation Format

Share Document