mouse gut microbiota
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 22)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marion Darnaud ◽  
Filipe De Vadder ◽  
Pascaline Bogeat ◽  
Lilia Boucinha ◽  
Anne-Laure Bulteau ◽  
...  

AbstractMus musculus is the classic mammalian model for biomedical research. Despite global efforts to standardize breeding and experimental procedures, the undefined composition and interindividual diversity of the microbiota of laboratory mice remains a limitation. In an attempt to standardize the gut microbiome in preclinical mouse studies, here we report the development of a simplified mouse microbiota composed of 15 strains from 7 of the 20 most prevalent bacterial families representative of the fecal microbiota of C57BL/6J Specific (and Opportunistic) Pathogen-Free (SPF/SOPF) animals and the derivation of a standardized gnotobiotic mouse model called GM15. GM15 recapitulates extensively the functionalities found in the C57BL/6J SOPF microbiota metagenome, and GM15 animals are phenotypically similar to SOPF or SPF animals in two different facilities. They are also less sensitive to the deleterious effects of post-weaning malnutrition. In this work, we show that the GM15 model provides increased reproducibility and robustness of preclinical studies by limiting the confounding effect of fluctuation in microbiota composition, and offers opportunities for research focused on how the microbiota shapes host physiology in health and disease.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Chenchen Ma ◽  
Chengcheng Zhang ◽  
Denghui Chen ◽  
Shuaiming Jiang ◽  
Siyuan Shen ◽  
...  

AbstractThe adaptive evolution in indigenous intestinal microbes derived from probiotics is critical to safety and efficacy evaluation of probiotics, yet it is still largely underexplored. Here, through 11 publicly accessible datasets, we demonstrated that probiotic consumption can lead to widespread single-nucleotide variants (SNVs) in the native microbiota. Interestingly, the same probiotic strains introduced far more SNVs in mouse gut than humans. Furthermore, the pattern of probiotics-induced SNVs was highly probiotic-strain specific, and 17 common SNVs in Faecalibacterium prausnitzii genome were identified cross studies, which might lead to changes in bacterial protein structure. Further, nearly 50% of F. prausnitzii SNVs can be inherited for six months in an independent human cohort, whereas the other half only transiently occurred. Collectively, our study substantially extended our understanding of co-evolution of the probiotics and the indigenous gut microbiota, highlighting the importance of assessment of probiotics efficacy and safety in an integrated manner.


2021 ◽  
Author(s):  
Mengqi Chu ◽  
Xiaobo Zhang

Abstract Background: Mouse model is one of of the most widely used animal models for exploring the roles of human gut microbiota, a complex system involving in human immunity and metabolism. However, the structure of mouse gut bacterial community has not been explored at a large scale. To address this concern, the diversity and composition of the gut bacteria of 600 mice was characterized in this study. Results: The results showed that the bacteria belonging to 8 genera were found in the gut microbiota of all mouse individuals, indicating that the 8 bacteria were the core bacteria of mouse gut microbiota. The dominant genera of the mouse gut bacteria contained 15 bacterial genera. It was found that the bacteria in the gut microbiota were mainly involved in host’s metabolisms via the collaborations between the gut bacteria. The further analysis demonstrated that the composition of mouse gut microbiota was similar to that of human gut microbiota. Conclusion: Our study presented a bacterial atlas of mouse gut microbiota, providing a solid basis for investing the bacterial communities of mouse gut microbiota.


2021 ◽  
Author(s):  
Silas Kieser ◽  
Evgeny M. Zdobnov ◽  
Mirko Trajkovski

AbstractMouse is the most used model for studying the impact of microbiota on its host, but the repertoire of species from the mouse gut microbiome remains largely unknown. Here, we construct a Comprehensive Mouse Gut Metagenome (CMGM) catalog by assembling all currently available mouse gut metagenomes and combining them with published reference and metagenome-assembled genomes. The 50’011 genomes cluster into 1’699 species, of which 78.1% are uncultured, and we discovered 226 new genera, 7 new families, and 1 new order. Rarefaction analysis indicates comprehensive sampling of the species from the mouse gut. CMGM enables an unprecedented coverage of the mouse gut microbiome exceeding 90%. Comparing CMGM to the human gut microbiota shows an overlap 64% at the genus, but only 16% at the species level, demonstrating that human and mouse gut microbiota are largely distinct.


2021 ◽  
Author(s):  
Xu-Wen Wang ◽  
Yang-Yu Liu

AbstractMany studies have revealed that both host and environmental factors can impact the gut microbial compositions, implying that the gut microbiota is considerably dynamic1–5. In their Article, Ji et al.6 performed comprehensive analysis of multiple high-resolution time series data of human and mouse gut microbiota. They found that both human and mouse gut microbiota dynamics can be characterized by several robust scaling laws describing short- and long-term changes in gut microbiota abundances, distributions of species residence and return times, and the correlation between the mean and the temporal variance of species abundances. They claimed that those scaling laws characterize both short- and long-term dynamics of gut microbiota. However, we are concerned that their interpretation is quite misleading, because all the scaling laws can be reproduced by the shuffled time series with completely randomized time stamps of the microbiome samples.


Author(s):  
Joseph D Sciurba ◽  
George E Chlipala ◽  
Stefan J Green ◽  
Martha A Delaney ◽  
Jeffrey D Fortman ◽  
...  

Disturbances in the gut microbiota are known to be associated with numerous human diseases. Mice have proven to be an invaluable tool for investigating the role of the gut microbiota in disease processes. Nonexperimental factors related to maintaining mice in the laboratory environment are increasingly being shown to have inadvertent effects on the gut microbiotaand may function as confounding variables. Microisolation technique is a term used to describe the common biosecuritypractice of spraying gloved hands with disinfectant before handling research mice. This practice prevents contamination with pathogenic microorganisms. To investigate if exposure to disinfectants can affect the mouse gut microbiota, C57BL/6 micewere exposed daily for 27 consecutive days to commonly used laboratory disinfectants through microisolation technique.The effects of 70% ethanol and disinfectant products containing chlorine dioxide, hydrogen peroxide, or potassium peroxymonosulfate were each evaluated. Fecal pellets were collected after 7, 14, 21, and 28 d of disinfectant exposure, and cecal contents were collected at day 28. DNA extractions were performed on all cecal and fecal samples, and microbial community structure was characterized using 16S ribosomal RNA amplicon sequencing. Alpha and β diversity metrics and taxon-level analyses were used to evaluate differences in microbial communities. Disinfectant had a small but significant effect on fecal microbial communities compared with sham-exposed controls, and effects varied by disinfectant type. In general, longerexposure times resulted in greater changes in the fecal microbiota. Effects on the cecal microbiota were less pronounced and only seen with the hydrogen peroxide and potassium peroxymonosulfate disinfectants. These results indicate that laboratory disinfectant use should be considered as a potential factor that can affect the mouse gut microbiota.


2020 ◽  
Vol Volume 13 ◽  
pp. 4547-4558
Author(s):  
Si-Lan Gu ◽  
Yiwen Gong ◽  
Jiaying Zhang ◽  
Yunbo Chen ◽  
Zhengjie Wu ◽  
...  

2020 ◽  
Vol 75 ◽  
pp. 104254
Author(s):  
Suisui Jiang ◽  
Mingyong Zeng ◽  
Yuanhui Zhao

BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Rabindra K. Mandal ◽  
Joshua E. Denny ◽  
Morgan L. Waide ◽  
Qingsheng Li ◽  
Neal Bhutiani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document