Correlated Responses of Selection for Growth Rate in Swedish Dual-purpose Cattle Breeds

1979 ◽  
Vol 29 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Ulf Karlsson
2001 ◽  
Vol 81 (2) ◽  
pp. 205-214 ◽  
Author(s):  
P. Chen ◽  
T. J. Baas ◽  
J. C. M. Dekkers ◽  
L. L. Christian

Selection for lean growth rate (LGR) was conducted for four generations in a synthetic line of Yorkshire-Meishan pigs to study the effectiveness of selection for LGR and correlated responses in litter traits. Lean growth rate was estimated from ultrasound measurements of 10th-rib backfat thickness and longissimus muscle area. In the selection line, 7 boars and 20 gilts with the highest LGR were selected to produce the next generation. The generation interval was 13 mo and the average selection differential per generation was 1.1 phenotypic standard deviation units. A contemporaneous control line was maintained by randomly selecting 5 boars and 15 gilts. Data from a total of 1057 pigs sired by 58 boars and out of 133 sows were available from the two lines. Selection responses were estimated from deviations of the selection line from the control line using least squares (LS) and by multiple trait derivative-free restricted maximum likelihood analysis using an animal model (AM). The estimate of response to selection per generation using LS was 9.4 ± 0.95 g d–1 for LGR. The corresponding estimate from the AM was 9.8 ± 0.51 g d–1. Correlated responses in litter traits were regressed on generation. For the LS method, regression coefficients were negative but not significant (P > 0.05) for total number born, number born alive, and number at 21 d and at 42 d. Significant, positive correlated responses occurred in 42-d litter weight and 21-d piglet weight (P < 0.05). For the AM method, the regression coefficients were also negative, but were not significant (P > 0.05) for numberalive at birth, at 21 d, and at 42 d. A significant positive correlated response occurred only for 42-d litter weight (P < 0.05). Although results are based on a population of limited size, it can be concluded that selection for LGR in a synthetic line is effective and should have little effect on litter traits. Key words: Pigs, selection, lean growth rate, correlated response


2020 ◽  
Vol 98 (8) ◽  
Author(s):  
Evelyne C Kessler ◽  
Rupert M Bruckmaier ◽  
Josef J Gross

Abstract Immunoglobulins (Ig) are essential components in the colostrum of bovine species that enable passive immunization of newborn calves. Concentrations of fat and protein are greater in colostrum compared with mature milk and represent a vital source of energy and nutrients. Colostral IgG was shown to vary between individual dairy cows, but comparative data on different breeds and performance levels are scarce. The objective of the present field study was to investigate the contents of total IgG, fat, protein, and lactose in colostrum in different Swiss and German dairy and dual-purpose breeds. We collected colostrum samples of 458 cows of 13 different breeds (dairy breeds: Brown Swiss, Swiss and German Holstein Friesian, and New Zealand Holstein; dual-purpose breeds: German Fleckvieh, Holstein Friesian × Montbéliarde, Montbéliarde, Murnau-Werdenfels, Original Braunvieh, Pinzgauer, Rhetic Gray, and Simmental; and beef-type crossbred: Charolais × Holstein Friesian). Colostrum samples were obtained between 5 and 900 min after calving and analyzed for total IgG, fat protein, and lactose contents. Immunoglobulin G concentrations varied between 12.7 and 204.0 mg/mL. No effect of breeding purpose (i.e., dairy or dual-purpose) nor of previous lactation yield on IgG content was observed. However, milking of cows for the first time later than 12 h after parturition resulted in lower colostrum IgG concentrations compared with colostrum harvest within 9 h after calving (P &lt; 0.05). Multiparous cows had a higher colostral IgG concentration than primiparous cows (P &lt; 0.0001). Overall, concentrations of IgG and other constituents in colostrum varied widely in the different cattle breeds. High-yielding dairy cows did not have poorer colostrum quality compared with lower-yielding animals or beef and dual-purpose breeds, which suggests an individually different transfer of circulating IgG into colostrum.


2007 ◽  
Vol 6 (sup1) ◽  
pp. 137-137 ◽  
Author(s):  
L. Fontanesi ◽  
E. Scotti ◽  
F. Schiavini ◽  
V. La Mattina ◽  
R. Davoli ◽  
...  

2007 ◽  
Vol 6 (4) ◽  
pp. 415-420 ◽  
Author(s):  
Luca Fontanesi ◽  
Emilio Scotti ◽  
Marco Tazzoli ◽  
Francesca Beretti ◽  
Stefania Dall’Olio ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2385
Author(s):  
Maria Giuseppina Strillacci ◽  
Mario Vevey ◽  
Veruska Blanchet ◽  
Roberto Mantovani ◽  
Cristina Sartori ◽  
...  

The Aosta Red Pied (Valdostana Pezzata Rossa (VRP)), the Aosta Black Pied (Valdostana Pezzata Nera (VBP)) and the Aosta Chestnut (Valdostana Castana (CAS)) are dual-purpose cattle breeds (meat and milk), very well adapted to the harsh environmental conditions of alpine territories: their farming is in fact characterized by summer pasture at very high altitude. A total of 728 individuals were genotyped with the GeenSeek Genomic Profiler® (GGP) Bovine 150K Illumina SNP chip as a part of the DUALBREEDING-PSRN Italian-funded research project. The genetic diversity among populations showed that the three breeds are distinct populations based on the FST values, ADMIXTURE and Principal Component Analysis (PCA) results. Runs of Homozygosity (ROH) were obtained for the three populations to disclose recent autozygosity. The genomic inbreeding based on the ROH was calculated and coupled with information derived from the F (inbreeding coefficient) and FST parameters. The mean FROH values were low: CAS = 0.06, VBP = 0.05 and VRP = 0.07, while the average F values were −0.003, −0.01 and −0.003, respectively. The annotation and enrichment analysis, performed in the identified most frequent ROH (TOP_ROH), showed genes that can be linked to the resilience capacity of these populations to harsh environmental farming conditions, and to the peculiar characteristics searched for by farmers in each breed.


1999 ◽  
Vol 74 (1) ◽  
pp. 43-54 ◽  
Author(s):  
LINDA PARTRIDGE ◽  
ROSALIE LANGELAN ◽  
KEVIN FOWLER ◽  
BAS ZWAAN ◽  
VERNON FRENCH

Correlated responses to artificial selection on body size in Drosophila melanogaster were investigated, to determine how the changes in size were produced during development. Selection for increased thorax length was associated with an increase in larval development time, an extended growth period, no change in growth rate, and an increased critical larval weight for pupariation. Selection for reduced thorax length was associated with reduced growth rate, no change in duration of larval development and a reduced critical larval weight for pupariation. In both lines selected for thorax length and lines selected for wing area, total body size changed in the same direction as the artificially selected trait. In large selection lines of both types, the increase in size was achieved almost entirely by an increase in cell number, while in the small lines the decrease in size was achieved predominantly by reduced cell size, and also by a reduction in cell number. The implications of the results for evolutionary-genetic change in body size in nature are discussed.


Sign in / Sign up

Export Citation Format

Share Document