Biofilm Formation on Voice Prostheses: Influence of Dairy Products in vitro

2000 ◽  
Vol 120 (1) ◽  
pp. 92-99 ◽  
Author(s):  
Rolien H. Free, Henny C. Van Der Me
2004 ◽  
Vol 124 (6) ◽  
pp. 726-731 ◽  
Author(s):  
Leonora Q. Schwandt ◽  
Ranny Van Weissenbruch ◽  
Ietse Stokroos ◽  
Henny C. Van Der Mei ◽  
Henk J. Busscher ◽  
...  

1999 ◽  
Vol 24 (4) ◽  
pp. 377-383
Author(s):  
R. H. free ◽  
H. C. van der mei ◽  
R. van weissenbruch ◽  
H. J. busscher ◽  
F. W. J. albers

2001 ◽  
Vol 110 (10) ◽  
pp. 946-951 ◽  
Author(s):  
Rolien H. Free ◽  
G. Jolanda Elving ◽  
Ranny van Weissenbruch ◽  
Henk J. Busscher ◽  
Henny C. vander Mei ◽  
...  

In order to determine the influence of probiotic bacteria on biofilm formation on Groningen and Provox 2 voice prostheses in an artificial throat, we grew biofilms on both types of voice prostheses and exposed them 3 times daily to a probiotic bacterial suspension. As a control, we perfused an artificial throat with phosphate-buffered saline solution. Perfusion with Lactococcus lactis 53 suspension reduced the percentage numbers of bacteria and yeasts, respectively, on the Groningen prostheses to 17% and 22% and on the Provox 2 prostheses to 19% and 45%, compared to the number of colony-forming units on the control prosthesis, which was set at 100%. A suspension of Streptococcus thermophilus b reduced the percentage numbers of bacteria and yeasts, respectively, on the Groningen prostheses to 53% and 33% and on the Provox 2 prostheses to 14% and 0%, as compared to the control prosthesis. All other probiotic strains tested caused some reduction in the percentages of bacteria or yeasts, but strong differences between the types of prostheses were observed. In conclusion, L lactis 53 and S thermophilus b strongly reduce the occurrence of yeasts and bacteria in voice prosthetic biofilms.


ORL ◽  
2021 ◽  
pp. 1-20
Author(s):  
Alexios Tsikopoulos ◽  
Efi Petinaki ◽  
Charalampos Festas ◽  
Konstantinos Tsikopoulos ◽  
Gabriele Meroni ◽  
...  

<b><i>Introduction:</i></b> Biofilm formation on voice prostheses is the primary reason for their premature implant dysfunction. Multiple strategies have been proposed over the last decades to achieve inhibition of biofilm formation on these devices. The purpose of this study was to assess the results of the available in vitro biofilm inhibition modalities on silicone rubber voice prostheses. <b><i>Methods:</i></b> We conducted a systematic search in PubMed, Embase, and the Cochrane Central Register of Controlled Trials databases up to February 29, 2020. A total of 33 in vitro laboratory studies investigating the efficacy of different coating methods against <i>Candida</i>, <i>Staphylococcus</i>, <i>Streptococcus</i>, <i>Lactobacilli</i>, and <i>Rothia</i> biofilm growth on silicone rubber medical devices were included. Subgroup analysis linked to the type of prevention modality was carried out, and quality assessment was performed with the use of the modified CONSORT tool. <b><i>Results:</i></b> Data from 33 studies were included in qualitative analysis, of which 12 qualified for quantitative analysis. For yeast biofilm formation assessment, there was a statistically significant difference in favor of the intervention group (standardized mean difference [SMD] = −1.20; 95% confidence interval [CI] [−1.73, −0.66]; <i>p</i> &#x3c; 0.0001). Subgroup analysis showed that combined methods (active and passive surface modification) are the most effective for biofilm inhibition in yeast (SMD = −2.53; 95% CI [−4.02, −1.03]; <i>p</i> = 0.00001). No statistically significant differences between intervention and control groups were shown for bacterial biofilm inhibition (SMD = −0.09; 95% CI [−0.68, 0.46]; <i>p</i> = 0.65), and the results from the subgroup analysis found no notable differences between the surface modification methods. After analyzing data on polymicrobial biofilms, a statistically significant difference in favor of prevention methods in comparison with the control group was detected (SMD = −2.59; 95% CI [−7.48, 2.31]; <i>p</i> = 0.30). <b><i>Conclusions:</i></b> The meta-analysis on biofilm inhibition demonstrated significant differences in favor of yeast biofilm inhibition compared to bacteria. A stronger inhibition with the application of passive or combined active and passive surface modification techniques was reported.


2000 ◽  
Vol 83 (4) ◽  
pp. 641-647 ◽  
Author(s):  
H.J. Busscher ◽  
R.H. Free ◽  
R. Van Weissenbruch ◽  
F.W.J. Albers ◽  
H.C. Van Der Mei

2016 ◽  
Vol 126 (12) ◽  
pp. 2752-2757 ◽  
Author(s):  
Todd J. Wannemuehler ◽  
Brian C. Lobo ◽  
Jeffrey D. Johnson ◽  
Christopher R. Deig ◽  
Jonathan Y. Ting ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1371
Author(s):  
Jakub Spałek ◽  
Tamara Daniluk ◽  
Adrian Godlewski ◽  
Piotr Deptuła ◽  
Urszula Wnorowska ◽  
...  

This study aimed to investigate the potential application of ceragenins (CSAs) as new candidacidal agents to prevent biofilm formation on voice prostheses (VPs). The deterioration of the silicone material of VPs is caused by biofilm growth on the device which leads to frequent replacement procedures and sometimes serious complications. A significant proportion of these failures is caused by Candida species. We found that CSAs have significant candidacidal activities in vitro (MIC; MFC; MBIC), and they effectively eradicate species of yeast responsible for VP failure. Additionally, in our in vitro experimental setting, when different Candida species were subjected to CSA-13 and CSA-131 during 25 passages, no tested Candida strain showed the significant development of resistance. Using liquid chromatography–mass spectrometry (LC-MS), we found that VP immersion in an ethanol solution containing CSA-131 results in silicon impregnation with CSA-131 molecules, and in vitro testing revealed that fungal biofilm formation on such VP surfaces was inhibited by embedded ceragenins. Future in vivo studies will validate the use of ceragenin-coated VP for improvement in the life quality and safety of patients after a total laryngectomy.


Head & Neck ◽  
2005 ◽  
Vol 27 (6) ◽  
pp. 471-477 ◽  
Author(s):  
Leonora Q. Schwandt ◽  
Ranny van Weissenbruch ◽  
Henny C. van der Mei ◽  
Henk J. Busscher ◽  
Frans W. J. Albers

Author(s):  
Baydaa Hussein ◽  
Zainab A. Aldhaher ◽  
Shahrazad Najem Abdu-Allah ◽  
Adel Hamdan

Background: Biofilm is a bacterial way of life prevalent in the world of microbes; in addition to that it is a source of alarm in the field of health concern. Pseudomonas aeruginosa is a pathogenic bacterium responsible for all opportunistic infections such as chronic and severe. Aim of this study: This paper aims to provide an overview of the promotion of isolates to produce a biofilm in vitro under special circumstances, to expose certain antibiotics to produce phenotypic evaluation of biofilm bacteria. Methods and Materials: Three diverse ways were used to inhibited biofilm formation of P.aeruginosa by effect of phenolic compounds extracts from strawberries. Isolates produced biofilm on agar MacConkey under certain circumstances. Results: The results showed that all isolates were resistant to antibiotics except sensitive to azithromycin (AZM, 15μg), and in this study was conducted on three ways to detect the biofilm produced, has been detected by the biofilm like Tissue culture plate (TCP), Tube method (TM), Congo Red Agar (CRA). These methods gave a clear result of these isolates under study. Active compounds were analyzed in both extracts by Gas Chromatography-mass Spectrometry which indicate High molecular weight compound with a long hydrocarbon chain. Conclusion: Phenolic compounds could behave as bioactive material and can be useful to be used in pharmaceutical synthesis. Phenolic contents which found in leaves and fruits extracts of strawberries shows antibacterial activity against all strains tested by the ability to reduce the production of biofilm formation rate.


Sign in / Sign up

Export Citation Format

Share Document