Basic and Neutral Compounds in the Cooked Odor from Antarctic Krill

1982 ◽  
Vol 46 (11) ◽  
pp. 2835-2839 ◽  
Author(s):  
Kikue Kubota ◽  
Akio Kobayashi ◽  
Tei Yamanishi
2012 ◽  
Vol 36 (2) ◽  
pp. 300
Author(s):  
Peng-xiang XU ◽  
Ying-chun LI ◽  
Guo-ping ZHU ◽  
Hui XIA ◽  
Liu-xiong XU

1999 ◽  
Vol 40 (4-5) ◽  
pp. 293-301 ◽  
Author(s):  
Bruno B. Levine ◽  
Kapal Madireddi ◽  
Valentina Lazarova ◽  
Michael K. Stenstrom ◽  
Mel Suffet

Organic and trace organic performance data for ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) at the Lake Arrowhead water reclamation pilot plant are analyzed to determine the treatment efficiency of these processes in an indirect potable reuse design. Four organic parameters were studied: dissolved organic carbon (DOC), ultra-violet absorbance at 254 nm (UV-254), SUVA and base neutral analysis (BNA). UF and NF removed the larger compounds from the influent, but had no significant impact on the base neutral fraction with the exception of sterols. The RO process removed DOC and UV-absorbance compounds from the effluent to their respective detection limits. Base neutral compounds were significantly removed by RO, leaving at extremely low concentrations small molecular weight compounds, indicating indirect potable reuse is technically feasible.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 483-489
Author(s):  
Bjørn A. Krafft ◽  
Ludvig A. Krag

AbstractThe use of light-emitting diodes (LEDs) is increasingly used in fishing gears and its application is known to trigger negative or positive phototaxis (i.e., swimming away or toward the light source, respectively) for some marine species. However, our understanding of how artificial light influences behavior is poorly understood for many species and most studies can be characterized as trial and error experiments. In this study, we tested whether exposure to white LED light could initiate a phototactic response in Antarctic krill (Euphausia superba). Trawl-caught krill were used in a controlled artificial light exposure experiment conducted onboard a vessel in the Southern Ocean. The experiment was conducted in chambers with dark and light zones in which krill could move freely. Results showed that krill displayed a significant positive phototaxis. Understanding this behavioral response is relevant to development of krill fishing technology to improve scientific sampling gear, improve harvest efficiency, and reduce potential unwanted bycatch.


2021 ◽  
Vol 168 (3) ◽  
Author(s):  
Mariana A. Juáres ◽  
Marta G. Grech ◽  
Ricardo Casaux ◽  
Javier Negrete ◽  
Jazmín Fógel ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
Anna Belcher ◽  
Sophie Fielding ◽  
Andrew Gray ◽  
Lauren Biermann ◽  
Gabriele Stowasser ◽  
...  

Abstract Antarctic krill are the dominant metazoan in the Southern Ocean in terms of biomass; however, their wide and patchy distribution means that estimates of their biomass are still uncertain. Most currently employed methods do not sample the upper surface layers, yet historical records indicate that large surface swarms can change the water colour. Ocean colour satellites are able to measure the surface ocean synoptically and should theoretically provide a means for detecting and measuring surface krill swarms. Before we can assess the feasibility of remote detection, more must be known about the reflectance spectra of krill. Here, we measure the reflectance spectral signature of Antarctic krill collected in situ from the Scotia Sea and compare it to that of in situ water. Using a spectroradiometer, we measure a strong absorption feature between 500 and 550 nm, which corresponds to the pigment astaxanthin, and high reflectance in the 600–700 nm range due to the krill's red colouration. We find that the spectra of seawater containing krill is significantly different from seawater only. We conclude that it is tractable to detect high-density swarms of krill remotely using platforms such as optical satellites and unmanned aerial vehicles, and further steps to carry out ground-truthing campaigns are now warranted.


Sign in / Sign up

Export Citation Format

Share Document