Identification of the Flame Describing Function of a Premixed Swirl Flame from LES

2012 ◽  
Vol 184 (7-8) ◽  
pp. 888-900 ◽  
Author(s):  
H. J. Krediet ◽  
C. H. Beck ◽  
W. Krebs ◽  
S. Schimek ◽  
C. O. Paschereit ◽  
...  
Author(s):  
D. Ebi ◽  
A. Denisov ◽  
G. Bonciolini ◽  
E. Boujo ◽  
N. Noiray

We report experimental evidence of thermoacoustic bi-stability in a lab-scale turbulent combustor over a well-defined range of fuel-air equivalence ratios. Pressure oscillations are characterized by an intermittent behavior with “bursts”, i.e. sudden jumps between low and high amplitudes occurring at random time instants. The corresponding probability density functions of the acoustic pressure signal show clearly separated maxima when the burner is operated in the bi-stable region. A flame describing function, which links acoustic pressure to heat release rate fluctuations, is estimated at the modal frequency from simultaneously recorded flame chemiluminescence and acoustic pressure. The representation of its statistics is new and particularly informative. It shows that this describing function is characterized, in average, by a nearly constant gain and by a significant drift of the phase as function of the oscillation amplitude. This finding suggests that the bi-stability does not result from an amplitude-dependent balance between flame gain and acoustic damping, but rather from the non-constant phase difference between the acoustic pressure and the coherent fluctuations of heat release rate.


Author(s):  
Frédéric Boudy ◽  
Daniel Durox ◽  
Thierry Schuller ◽  
Grunde Jomaas ◽  
Sébastien Candel

A recently developed nonlinear flame describing function (FDF) is used to analyze combustion instabilities in a system where the feeding manifold has a variable size and where the flame is confined by quartz tubes of variable length. Self-sustained combustion oscillations are observed when the geometry is changed. The regimes of oscillation are characterized at the limit cycle and also during the onset of oscillations. The theoretical predictions of the oscillation frequencies and levels are obtained using the FDF. This generalizes the concept of flame transfer function by including dependence on the frequency and level of oscillation. Predictions are compared with experimental results for two different lengths of the confinement tube. These results are, in turn, used to predict most of the experimentally observed phenomena and in particular, the correct oscillation levels and frequencies at limit cycles.


Author(s):  
Yipin Lu ◽  
Yinli Xiao ◽  
Juan Wu ◽  
Liang Chen

Lean premixed combustion is a common form of combustion organization in power equipment and propulsion systems. In order to understand the dynamic characteristics of lean premixed flame and predict and control its combustion instability, it is necessary to obtain its flame describing function (FDF). Based on the open source CFD toolbox, OpenFOAM, the dynamic K-equation model, and the finite rate Partially Stirred Reactor (PaSR) model were used to perform large eddy simulations (LES) of lean premixed combustion, and the response of the unsteady heat release rate to single-frequency harmonic disturbances was studied. The response of the unsteady heat release rate was characterized by the FDF, and the response of the unsteady heat release rate to the two-frequency harmonic disturbance was studied. The results show that the quantitative heat release rate response and flame dynamics have very proper accuracy. In the single-frequency harmonic disturbance, as the forcing frequency increases, the curling behavior of the flame surface and the instantaneous vortex structure change; the nonlinear kinematics effect is manifested by the entrainment of the vortex. At lower forcing frequencies, the heat release response changes linearly with the increase of forcing amplitude; at intermediate frequencies, the heat release response exhibits obvious nonlinear behavior; at high frequencies, the heat release response to amplitude changes decreases. The introduction of the second harmonic disturbance will significantly reduce the response range of the total heat release rate and make the combustion more stable.


Author(s):  
Alessandro Orchini ◽  
Georg A. Mensah ◽  
Jonas P. Moeck

In this theoretical and numerical analysis, a low-order network model is used to investigate a thermoacoustic system with discrete rotational symmetry. Its geometry resembles that of the MICCA combustor (Laboratoire EM2C, CentraleSupelec); the flame describing function (FDF) employed in the analysis is that of a single-burner configuration and is taken from experimental data reported in the literature. We show how most of the dynamical features observed in the MICCA experiment, including the so-called slanted mode, can be predicted within this framework, when the interaction between a longitudinal and an azimuthal thermoacoustic mode is considered. We show how these solutions relate to the symmetries contained in the equations that model the system. We also discuss how considering situations in which two modes are linearly unstable compromises the applicability of stability criteria available in the literature.


Author(s):  
Fre´de´ric Boudy ◽  
Daniel Durox ◽  
Thierry Schuller ◽  
Grunde Jomaas ◽  
Se´bastien Candel

A recently developed nonlinear Flame Describing Function (FDF) is used to analyze combustion instabilities in a system where the feeding manifold has a variable size and where the flame is confined by quartz tubes of variable length. Self-sustained combustion oscillations are observed when the geometry is changed. Regimes of oscillation are characterized at the limit cycle and also during the onset of oscillations. Theoretical predictions of the oscillation frequencies and levels are obtained using the FDF. This generalizes the concept of flame transfer function by including a dependence on the frequency and on the level of oscillation. Predictions are compared with experimental results for two different lengths of the confinement tube. These results are in turn used to predict most of the experimentally observed phenomena and in particular the correct oscillation levels and frequencies at limit cycles.


2013 ◽  
Vol 341 (1-2) ◽  
pp. 181-190 ◽  
Author(s):  
Frédéric Boudy ◽  
Daniel Durox ◽  
Thierry Schuller ◽  
Sébastien Candel

Author(s):  
Giulio Ghirardo ◽  
Matthew P. Juniper ◽  
Jonas P. Moeck

Rotationally symmetric annular combustors are of practical importance because they generically resemble combustion chambers in gas turbines and aeroengines, in which thermoacoustically driven oscillations are a major concern. We focus on thermoacoustic oscillations of azimuthal type, neglect the effect of the transverse acoustic velocity in the azimuthal direction, and model the heat release rate as being dependent only on the pressure in the combustion chamber. We study the dynamics of the annular combustor with a finite number of compact flames equi-spaced along the annulus, and characterise the flames’ response with a describing function. We discuss with broad generality the existence, amplitudes and the stability of standing and spinning waves, as a function of: 1) the number of the burners; 2) the damping in the chamber; 3) the flame describing function. These have implications on industrial applications, the future direction of investigations, and for what to look for in experimental data. We then present as an example of application the first theoretical study of triggering in annular combustors, and show that rotationally symmetric annular chambers can experience stable standing solutions.


Sign in / Sign up

Export Citation Format

Share Document