Nitric Acid as a Cold Extractor of Total Nutrient Contents from Mineral Fertilizers

Author(s):  
Fabiane Carvalho Ballotin ◽  
Wedisson Oliveira Santos ◽  
Marcus Vinícius de Andrade Barros ◽  
Edson Marcio Mattiello ◽  
Adriana Correa Mendonça ◽  
...  
2020 ◽  
Vol 12 (2) ◽  
pp. 702
Author(s):  
Tuure Parviainen ◽  
Juha Helenius

In Finland, while total agricultural production has remained relatively constant, nutrient input from industrial mineral fertilizers has declined over the past 20 years, which has been the target of environmental policies due to eutrophication risks. From 1996 to 2014, the use of nitrogen (N) declined by 18%, phosphorus (P) by 49%, and potassium (K) by 49%. However, at the same time, the international agricultural products trade has increased dramatically by mass (58%), and Finland has increased imports of food and feed products, such as, protein feeds, vegetables, and fruits. We analyzed the nutrient contents of foreign trade from 1996 to 2014 by using a substance flow analysis. We discovered that, when comparing nutrients contained in trade to the use of fertilizers, the trade of food and feed accounts for more than one-third (40%) of the fertilizer input to the Finnish food system. In 2014, 53 Gg of N, 8 Gg of P, and 15 Gg of K were imported due to trade, equating to 35%, 70%, and 45%, respectively, compared to the use of fertilizers in the food system. Declines in fertilizer inputs to crop production are partially offset by flows of plant nutrients from feed imports. In formulating agri-environmental policies targeting nutrient loading, more attention should be paid to national imports–export balances and, especially, to the spatial distribution of flows in feed trade.


2019 ◽  
Vol 47 (4) ◽  
pp. 1331-1336
Author(s):  
Sultan DERE ◽  
Ayse COBAN ◽  
Yelderem AKHOUNDNEJAD ◽  
Suleyman OZSOY ◽  
Hayriye Yildiz DASGAN

Intensive use of mineral fertilizers in soilless growing systems can have adverse effects on the environment and human health and could be economically expensive. Aim of this study was whether it can be reduced mineral nutrients in soilless grown melon by using mycorrhizae inoculation. The experiment has been carried out in the early spring growing period in a greenhouse in the Mediterranean climate. The eight treatments have been applied:  (1) 100% Full nutrition (control), (2) 100% Full nutrition+mycorrhiza, (3) 80% nutrition, (4) 80% nutrition+mycorrhiza (5) 60% nutrition (6) 60% nutrition+mycorrhiza (7) 40% nutrition, (8) 40% nutrition+mycorrhiza. Effects of mycorrhiza on melon plant growth, yield, fruit quality, and leaf nutrient concentrations were investigated. Arbuscular mycorrhizal fungi colonization is accompanied by plant growth increases in reduced nutrient levels. The mycorrhiza inoculation had a significant enhancing effect on total yield in soilless grown melon plants. The highest increasing effect on melon yield was observed in the “80% nutrient+mycorrhiza”, and AM- inoculated plants produced 49.5% higher melon yield (12.4 kg m-2) than that of control plants without mycorrhizae (8.3 k gm-2). AM-inoculation was also able to establish an improvement in Brix and EC of melon fruit. In the nutrient contents of leaves, there were slight increases in AM-inoculated plants, except P. The P content was significantly increased in AM-inoculated 80% nutrient plants as comparison to that of its control.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


1916 ◽  
Vol 82 (2122supp) ◽  
pp. 150-150
Author(s):  
R. Seligman ◽  
P. Williams
Keyword(s):  

2020 ◽  
pp. 181-191
Author(s):  
M. Tkachenko ◽  
N. Borys ◽  
Ye. Kovalenko

The research aims to establish the eff ectiveness of granular chalk use produced by «Slavuta-Calcium» Ltd. under growing Poliska–90 winter wheat variety, changing the physicochemical properties of grey forest soil and the wheat productivity. It also aims to establish optimal dosis of «Slavuta-Calcium» granular chalk as the meliorant and mineral fertilizer for grey forest soil in the system of winter wheat fertilization. In the temporary fi eld studies, various doses of nutrients N60–90–120P30–45–60K60–90–120 combined with «Slavuta–Calcium» granular chalk in a dose of Ca230–460–690 kg/ha of the active substance were studied against the background of secondary plowing of rotation products – soybean biomass that averaged 2.34 t/ha. Granular chalk is a modern complex highly eff ective meliorant with the content of Ca – 37.7 and Mg – 0.2 %, the mass fraction of carbonates (CaCO3 + MgCO3) makes at least 95 %. It is characterized by a high level of solubility when interacting with moisture in soil. It has a form of white granules, the mass fraction of 4.0–6.0 mm in size granules makes not less than 90 % and the one of 1.0 mm in size makes less than 5 %. Reactivity – 97 %. The granular chalk is advisable to apply on acidic soils, as a highly concentrated calcium-magnesium fertilizer, with the former as the dominant fertilizer, to optimize the physicochemical properties of the soil, as well as the plant nutrition system, in particular, increasing the availability of an element for assimilation by plants and as long-term ameliorants. The eff ectiveness of the use of mineral fertilizers, in particular acidic nitrogen on highly and medium acidic soils, after chemical reclamation is increased by 30–50 %, and slightly acidic by 15–20 %. The increase in productivity of crops from the combined eff ects of nutrients and chalk granulated is usually higher than when separately applied. The eff ectiveness of the integrated action of these elements is manifested in the growth of plant productivity and the quality of the resulting products, as well as the optimization of physical chemical properties and soil buff ering in the long term. In order to optimize the physicochemical properties of the arable layer of gray forest soil and the productive nutrition of agricultural crops, winter wheat, in particular, biogenic elements should be used in doses N60-90-120P30-45- 60K60-90-120 with granulated chalk «Slavuta-Calcium» in doses of Ca230-460-690 kg/ha of active substance. Granulated chalk obtained as a result of industrial grinding of solid sedimentary carbonate rocks of natural origin, subsequently under the infl uence of the granulation process of the starting material contains Ca and Mg carbonates of at least 95 %, dense granules which facilitates convenient mechanized application, as well as chalk suitable for accurate metered application on the quest map. Key words: granular chalk, gray forest soil, chemical reclamation, crop productivity.


2015 ◽  
Vol 53 (6) ◽  
pp. 426-431 ◽  
Author(s):  
Jae-Woo Ahn ◽  
Seong-Hyung Ryu ◽  
Tae-Young Kim
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document