Phosphate Sorption Capacity in Relation to Properties of Several Types of Kenya Soil

1973 ◽  
Vol 38 (4) ◽  
pp. 400-404 ◽  
Author(s):  
G. Hinga
Geoderma ◽  
1995 ◽  
Vol 66 (3-4) ◽  
pp. 285-296 ◽  
Author(s):  
Richard Lookman ◽  
Nadia Vandeweert ◽  
Roel Merckx ◽  
Karel Vlassak

2010 ◽  
Vol 59 (1) ◽  
pp. 77-84
Author(s):  
Gy. Füleky

The aim of the presented study was to prepare the phosphate sorption isotherms of 20 European volcanic soil profiles and some other Hungarian and German volcanic soils (n = 114) used in the experiment and to establish the soil characteristics determining the phosphate sorption capacity of these soils. The Langmuir isotherm well describes the phosphate sorption of European volcanic soils at bright concentration interval 0–600 mg·dm -3 P. The calculated phosphate adsorption maximum (P max ) is an excellent soil property for characterizing the surface activity of soils developed on volcanic parent material. The calculated phosphate sorption maxima of soils included in the experiment ranged from 0 to 10.000 mg P·kg -1 . Some of the volcanic soils sorbed a high ratio of the added phosphate at low concentrations, while others sorbed somewhat less. The difference in the phosphate binding affinity of soils caused the differences in the shape of the Langmuir adsorption isotherms. P retention % is a WRB diagnostic requirement of andic soil horizon. It was supposed that the phosphate sorption maximum (P max ) gives a better characterization of the surface reactivity of volcanic soils. As it was predicted, oxalate soluble Al is the most important soil property, which dominantly (in 73%) explained the phosphate sorption ability of European volcanic soils.


2020 ◽  
Author(s):  
Gerhard Soja ◽  
Stefan Wyhlidal ◽  
Wolfgang Friesl-Hanl ◽  
Kathrin Zwölfer ◽  
Julia Edlinger ◽  
...  

<p>Pits from fruit like apricots, peaches and cherries are an under-utilized resource. If there is any use at all, they may be extracted for special vegetable oils. Mostly the pits are combusted or left to rot. However, they are also an appropriate feedstock for pyrolytic carbonization. This study investigated the biochar produced from apricot pits for its potential to sorb phosphate from liquid media and from artificial wastewater.</p><p>Shredded apricot pits were pyrolyzed at 450 °C in a lab-scale screw reactor (Pyreka 3.0). Additionally, the impregnation of the feedstock with Mg(OH)<sub>2</sub> before pyrolysis was studied to test the hypothesis that phosphate sorption to biochar takes advantage of metal bridges on the biochar surface.</p><p>The results of isotherm sorption experiments showed that the pre-pyrolysis Mg-surface modification of the pits improved the sorption capacity of the biochar up to 42 mg PO<sub>4</sub>-P/g whereas the unmodified biochar adsorbed only about one tenth. When KH<sub>2</sub>PO<sub>4</sub> was used as the only sorbate, EDX-mapping showed the formation of K-struvite-crystals in the pores of the biochar. Desorption experiments showed a major release of the adsorbed phosphate within a few hours. Sorption competition experiments with phosphate and nitrate showed no negative effect of nitrate on phosphate sorption. Feedstock impregnation with Ca(OH)<sub>2</sub> resulted in more variable sorption dynamics.</p><p>The results could be confirmed by deploying the surface-modified apricot pit biochar for the reduction of the phosphate load in artificial wastewater.</p>


Soil Research ◽  
1982 ◽  
Vol 20 (3) ◽  
pp. 233 ◽  
Author(s):  
ICR Holford

In studies using 62 Australian and English soils, the two parameters of the Freundlich sorption equation were compared with phosphate sorption capacity, calculated from the Langmuir 'two-surface' equation, and sorptivity and affinity indices calculated from the simple Langmuir equation applied to an isotherm concentration range of 0-5�g phosphorus/ml. The Freundlich extensive parameter was most highly correlated with sorptivity, and to a decreasing extent with sorption capacity and affinity. It appears to be fundamentally a sorptivity index which reflects the sorption capacity more than the affinity component of sorption, although greatly underestimating sorption capacity. The reciprocal of the Freundlich exponent proved to be an affinity parameter and was most useful in this role on soils of similar sorption capacity. However, conflicting results on different groups of soils showed that this parameter was less distinctive in its role than the others. Studies on two different groups of soils showed that the sorptivity and affinity parameters from the Langmuir equation accounted for more of the variance in plant uptake of labile phosphate than the Freundlich parameters.


1965 ◽  
Vol 5 (16) ◽  
pp. 52 ◽  
Author(s):  
RS Beckwith

Phosphate sorption capacity of soils has meaning only if the equilibrium supernatant solution concentration is specified. Measurements have been made, on a variety of Queensland soils, at an equilibrium concentration of 0.2 p.p.m. P ; reasons for this choice of cencentration are discussed. Phosphate sorption values measured in this way appear to parallel the phosphate needs of legumes growing on a number of the soils examined in the laboratory. The approach is put forward for testing by others on present and future phosphate rate trials. Present phosphate sorption measurements are interpreted as indicating (1) that even where native phosphate is inadequate, or has been depleted by cropping, heavy-textured grey and brown soils of the brigalow lands will only require small field applications of superphosphate. (This statement may not apply to soils containing free carbonate in the surface). (2) that phosphate requirements of krasnozems vary considerably but may exceed 1 ton of superphosphate an acre in some areas. Loss of the surface horizon by erosion, or mixing the subsoil With surface soil, could increase the phosphate requirement of some of these soils. (3) that the phosphate status of soils formed from phyllite in the Gympie district is intermediate between these extremes. Here also the subsoils must be expected to have larger phosphate requirements than the surface soils.


1963 ◽  
Vol 35 (4) ◽  
pp. 165-177
Author(s):  
Armi Kaila

An attempt was made to study to what extent the capacity of the more or less acid soils in Finland to sorb phosphate may be explained on the basis of their content of aluminium and iron. The indicator of the phosphate sorption capacity was calculated on the basis of the Freundlich adsorption isotherm according to the procedure proposed by TERÄSVUORI (8). The material consisted of 390 samples from cultivated and virgin soils representing both topsoils and subsoils. The indicator of the phosphate sorption capacity, the coefficient k, varied in the present material from 40 to 1510. The mean values (with the confidence limits at the 95 per cent level) were for the 109 samples of sand and fine sand soils 290 ± 17, for the 103 samples of loam and silt soils 201 ± 24, for the 151 clay soils 308 ± 20, and for the 27 humus soils 236 ± 41. The total linear correlation coefficients between k and the soil pH, and its contents of organic carbon or clay were low or negligible in most of the soil groups. The correlation of k with the content of aluminium extracted by Tamm’s acid ammonium oxalate was fairly close in the clay soils (r = 0.84***), lower in the sand and fine sand soils (r = 0.77***), and in the loam and silt soils, and in the humus soils it was rather poor (r = 0.65*** and 0.63*** resp.). The elimination of the effect of the ammonium oxalate soluble iron decreased the correlation in the two latter groups quite markedly (to 0.32** and 0.37 resp.), while the corresponding decrease in the coefficients for the former groups was less significant (to 0.64*** and 0.75*** resp.). The elimination of the effect of the ammonium oxalate soluble aluminium, on the other hand, decreased the correlation coefficients between k and the ammonium oxalate soluble iron in the sand and fine sand soils from 0.59*** to 0.26**, in the loam and silt soils from 0.73*** to 0.54***, in the clay soils from 0.70*** to 0.51***, and in the humus soils from 0.68*** to 0.49*. The part of variation in k which could be explained on the basis of the variation in the contents of aluminium and iron was different in the different kind of soils. According to the coefficients of determination and the coefficients of multiple determination, the variance in the aluminium content determined 59 per cent of the variance in k in the sand and fine sand soils and 70 per cent in the clay soils; considering also the content of iron increased this part to 61 per cent and 78 per cent, resp. In the loam and silt soils the variation in the iron content explained 53 per cent of the variation in k, in the humus soils this percentage was 47. Considering both aluminium and iron, the proportion of the variance in k which could be explained in these two groups was increased to 60 per cent and 54 per cent, resp. Thus, in addition to the contents of ammonium oxalate soluble iron and aluminium, other factors must be found to explain the variation in the phosphate sorption capacity, particularly in other soil groups than in the clay soils. The soil pH and its content of organic carbon obviously play only a minor role among these ctors.


2015 ◽  
Vol 71 (12) ◽  
pp. 1875-1883 ◽  
Author(s):  
HyunJu Park ◽  
Duc Canh Nguyen ◽  
Choo-Ki Na

In this study, we investigated the removal of phosphate from aqueous solutions using (vinylbenzyl)-trimethylammonium chloride (VBTAC) grafted onto poly(ethylene terephthalate) (PET) fibers (PET-g-VBTAC). Batch-mode experiments were conducted using various contact times, initial phosphate concentrations, temperatures, pH values, and competing anions, to understand phosphate sorption onto PET-g-VBTAC. The phosphate sorption capacity of PET-g-VBTAC increased with increasing solution pH and was highest near pH 7. The equilibrium data fitted the Langmuir isotherm model well. The maximum sorption capacity (qm) of PET-g-VBTAC for phosphate was 55.6–56.0 mg/g at 25–45 °C. The sorption process followed a pseudo-second-order kinetic model. The obtained values of the mean free energy indicated that sorption of phosphate on PET-g-VBTAC occurs via ion exchange. Thermodynamic parameters, enthalpy change, entropy change, and Gibb's free energy, confirmed that phosphate sorption was spontaneous and endothermic. The adverse effects of competing anions on phosphate removal by PET-g-VBTAC were insignificant. These results demonstrate that PET-g-VBTAC effectively removes phosphate from aqueous solutions by ion exchange.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0135364 ◽  
Author(s):  
Longbin Huang ◽  
Xiaofang Li ◽  
Tuan A. H. Nguyen

Geoderma ◽  
1972 ◽  
Vol 7 (3-4) ◽  
pp. 225-232 ◽  
Author(s):  
G.G. Galindo ◽  
C. Olguín ◽  
E.B. Schalscha

Sign in / Sign up

Export Citation Format

Share Document