scholarly journals Structure and tectonics of lower crustal and upper mantle rocks in the Jurassic Mirdita ophiolites, Albania

2009 ◽  
Vol 52 (2-3) ◽  
pp. 117-141 ◽  
Author(s):  
Avni Meshi ◽  
Françoise Boudier ◽  
Adolphe Nicolas ◽  
Ibrahim Milushi
Keyword(s):  
2021 ◽  
Author(s):  
Eric Roots ◽  
Graham Hill ◽  
Ben M. Frieman ◽  
James A. Craven ◽  
Richard S. Smith ◽  
...  

<p>The role of melts and magmatic/metamorphic fluids in mineralization processes is well established. However, the role of crustal architecture in defining source and sink zones in the middle to lower crust remains enigmatic. Integration of three dimensional magnetotelluric (MT) modelling and seismic reflection data across the Archean Abitibi greenstone belt of the Superior Province, Canada, reveals a ‘whole-of-crust’ mineralizing system and highlights the controls by crustal architecture on metallogenetic processes. Electrically conductive conduits in an otherwise resistive upper crust are coincident with truncations and offsets of seismic reflections that are mostly interpreted as major brittle-ductile fault zones. The spatial association between these features and low resistivity zones imaged in the 3D models suggest that these zones acted as pathways through which fluids and melts ascended toward the surface. At mid-crustal levels, these ‘conduit’ zones connect to ~50 km long, north-south striking conductors, and are inferred to represent graphite and/or sulphide deposited from cooling fluids. At upper mantle to lower crustal depths, east-west trending conductive zones dominate and display shallow dips. The upper mantle features are broadly coincident with the surface traces of the major deformation zones with which a large proportion of the gold endowment is associated. We suggest that these deep conductors represent interconnected graphitic zones perhaps augmented by sulphides that are relicts from metamorphic fluid and melt emplacement associated primarily with the later stages of regional deformation.  Thus, from the combined MT and seismic data, we develop a crustal-scale architectural model that is consistent with existing geological and deformational models, providing constraints on the sources for and signatures of fluid and magma emplacement that resulted in widespread metallogenesis in the Abitibi Subprovince.</p>


2020 ◽  
Vol 279 ◽  
pp. 119-142 ◽  
Author(s):  
Catherine A. Macris ◽  
Robert C. Newton ◽  
Jeremy Wykes ◽  
Ruiguang Pan ◽  
Craig E. Manning
Keyword(s):  

Author(s):  
Brian G. J. Upton ◽  
Peder Aspen ◽  
Robert H. Hunter

ABSTRACTLate Palaeozoic alkalic basalts in and around the Midland Valley of Scotland contain a wide variety of ‘plutonic’ xenoliths. Pyroxene-rich ultramark xenoliths (wehrlites, clinopyroxenites and garnet pyroxenites) may be representative of younger components within a dominantly peridotitic upper mantle represented by ubiquitous magnesian peridotite xenoliths. Glimmerites and other biotite-rich ultramafic xenoliths are probable samples of metasomatised upper mantle facies.Xenoliths composed mainly of plagioclase, clinopyroxene ± orthopyroxene ± magnetite are widespread. These pyroxene granulites may typify the lower crustal layers. Garnet granulites are rare; such rocks may formerly have been important with loss of garnet occurring through retrograde metamorphism. Anorthositic xenoliths are relatively common. The lower crust may consist largely of anhydrous rocks, of gabbroic to anorthositic composition, ccurring as stratiform bodies of metacumulates.Other xenoliths of igneous origin include tonalitic and trondhjemitic gneisses. Although these may play some role in the lower crust, they may be more abundant in the mid-crustal domains underlying the deformed upper Precambrian and lower Palaeozoic supracrustal strata. Xenoliths of quartzofeldspathic, granulitic gneisses containing garnet ± sillimanite ± rutile are also of widespread occurrence; many of these are of metasedimentary provenance and are regarded as being derived from the mid-crustal layers beneath the Southern Highlands, Midland Valley and Southern Uplands and their Irish counterparts.


2021 ◽  
Author(s):  
Alexandra Guy ◽  
Christel Tiberi ◽  
Saandar Mijiddorj

<p>This study integrates gravity modelling and analysis with seismic constraints through the prism of seismic anisotropy to characterize the structures of southern Mongolia, in particular at the lower crustal but also the upper mantle levels. Recently, gravity signal analysis and forward modelling combined with magmatic geochemistry and thermodynamic modelling demonstrate that relamination of allochtonous felsic to intermediate lower crust played a major role in southern Mongolia structure. Relamination of material induces a homogeneous layer in the lower crust, which contrasts with the highly heterogeneous upper crustal part composed of different lithotectonic domains. The seismic signals of the seven southernmost stations of the MOBAL2003 experiment were analyzed to get the receiver functions. The data treatment was performed following a new protocol, which reduces the noise on the different components. This treatment reveals the variation of the crustal thickness of cca. 10 km along the first 450 km of the profile. In addition, some seismic stations display significant signals related to the occurrence of a low velocity zone (LVZ) at lower crustal and upper mantle levels. The depth of the Moho discontinuity and the dips of the seismic interfaces obtained from the seismic inversions as well as the boundaries of the different tectonic zones constitute the starting points from the 2D forward gravity modelling along the southern part of the MOBAL 2003 profile. Moreover, the density values applied to the different blocks were determined according to the global lithological composition of the different units and the vergences of the tectonic contacts were constrained by the geodynamic studies. The gravity modelling reveals the occurrence of a low density zone in the lower crust beneath the four southernmost seismic stations, which corresponds to the LVZ observed with the receiver function analysis. The combination of the independent methods enhances the occurrence of a low velocity and a low density zone (LVLDZ) at lower crustal level beneath the southernmost part of the MOBAL 2003 seismic profile. These LVLDZ may demonstrate the existence of the relamination of a hydrous material in southern Mongolia.</p>


1991 ◽  
Vol 32 (1) ◽  
pp. 169-200 ◽  
Author(s):  
H. G. WILSHIRE ◽  
A. V. McGUIRE ◽  
J. S. NOLLER ◽  
B. D. TURRIN

1986 ◽  
Vol 23 (9) ◽  
pp. 1412-1432 ◽  
Author(s):  
Tsai-Way Wu ◽  
Robert Kerrich

Oxygen isotopic compositions of whole rocks and coexisting quartz–feldspar pairs have been determined for nine pre-, and syn- to late-kinematic granitoid plutons in the Grenville Province of Ontario. These new data demonstrate that granitoid rocks (Algonquin, Mulock) in migmatite terrain of the Ontario Gneiss Segment possess normal δ18O values (<9.0‰), whereas mesozonal to epizonal plutons (Elphin, Coe Hill, Deloro, Barber's Lake) in the Central Metasedimentary Belt (CMB) are characterized by significantly higher 18O contents (δ18O > 9.0‰), in accord with previous results.In the Algonquin sodic suite, a gross covariance of δ18O with compositional indices is present, from 6.4‰, SiO2 = 50.5 wt. % (gabbro) to 8.7‰, SiO2 = 72 wt. % (trondhjemite), resulting from combined assimilation–fractional crystallization. Mafic members of the sodic suite are 18O enriched overall (5.8–7.9‰) relative to fresh tholeiites (5.7 + 0.3‰), implicating some 18O contamination of the protolith. The dispersion of δ18O values in the Algonquin potassic suite, from 4.3 to 9.3‰, is independent of composition and attributed to isotopic exchange with low-18O thermal waters during emplacement. Biotite–hornblende granite of the Mulock batholith is characterized by a limited oxygen isotope compositional range, where the average δ18O = 8.1 ± 0.5‰; δ18O correlates with SiO2 but not with the zonal distribution of Ba, Rb, and Sr abundances.The Union Lake quartz diorite (δ18O = 8.5 ± 0.1‰) and White Lake trondhjemite (δ18O = 7.3 ± 0.6‰) have oxygen isotope compositions comparable to those of other trondhjemitic suites in the CMB. A systematic enrichment of ~1.2‰ in the Union Lake pluton, together with enhanced Ca, Mg, Fe, and Sr, can be accounted for by assimilation of ~5% marbles and 10% amphibolites from the country rock. Uniformly high δ18O values of 11.5 ± 0.8‰ characterize the Elphin granite–syenite complex. The largest values (11.7–12.7‰) and lowest SiO2 (54–56 wt. %) are in the partially assimilated host gabbro–diorite complex, endorsing the presence of 18O-enriched source regions. The Cheddar biotite–hornblende granite, one of a population of intrusions within the alkalic belt of the western CMB, has a restricted isotopic span, where δ18O = 8.8 ± 0.9‰. An unusual concave rare-earth-element (REE) distribution may result from interaction with a heavy rare-earth -element (HREE) enriched volatile phase. The Coe Hill biotite granite (δ18O = 10.4 ± 0.4‰) is isotopically in compliance with other granites and syenites of the CMB. Covariance of δ18O and SiO2, in conjunction with smooth and continuous geochemical trends, is interpreted in terms of assimilation–fractional crystallization.Peralkaline granite of the Deloro pluton includes a hypersolvus phase with high, scattered δ18O values (9.1–11.8‰) and a subsolvus counterpart attributed to late influx of water that induced isotopic reequilibration toward a more constrained range (δ18O = 9.2–10.2‰). REE distributions of a calcic syenite phase are compatible with its evolution by fractional crystallization of a low-K tholeiitic magma, and the high-18O character (δ18O = 11.1–12.6‰) requires 18O enrichment of the protolith and (or) 18O contamination of the magma. Peralkaline rhyolitic volcanics, compositionally coherent with the Deloro pluton and possibly representing extrusive equivalents, possess significantly higher and more variable δ18O values, from 11.7 to 14.2‰; this is attributed to 18O enrichment during low-temperature exchange with thermal waters, superimposed on a primary high-18O magma. The Barber's Lake two-mica granite contains enhanced abundances of U (15 ppm) and Th (36 ppm) in conjunction with systematically elevated δ18O values (10.4 ± 0.5‰). Geochemical constraints are compatible with its evolution from a trondhjemitic magma, but the isotopically enriched nature requires extensive 18O contamination of the protolith and (or) magma. These nine granites variously retain "memory" of primary and (or) secondary features, including δ18O of the source region, covariance of isotopic and compositional parameters, and sporadically superimposed disturbance by exchange with thermal waters. During metamorphism, quartz and feldspar were systematically reset to high-temperature fractionations, but the extent of open-system exchange with rock reservoirs was limited.Despite some probable disturbance by metamorphism and the limited data available, O–Sr isotope systematics of the Grenville granitoids indicate that (1) high-18O granites from the Frontenac Axis were derived from in situ anatexis of Grenville Supergroup metasediments, (2) synkinematic granites were derived by mixing of a primary magma generated at a lower crustal (granulite facies) or upper mantle level with the fusion products generated by partial melting of the Archean–Early Proterozoic type metasediments, and (3) the tonalite–trondhjemite suite in this part of the Grenville Province was derived from a similar lower crustal or upper mantle primary magma by direct fractional crystallization.


2005 ◽  
Vol 42 (4) ◽  
pp. 385-402 ◽  
Author(s):  
D J White ◽  
M D Thomas ◽  
A G Jones ◽  
J Hope ◽  
B Németh ◽  
...  

A summary and comparison of geophysical data and models for the Trans-Hudson Orogen in northern Manitoba and Saskatchewan are presented. Magnetic total field and Bouguer gravity maps are used to define the along-strike extension of geological domains of the orogen exposed on the Canadian Shield, and a two-dimensional density model is produced, which accounts for the observed variations of the Bouguer gravity field across the orogen. An 800-km-long crustal section across the entire continent–continent collision zone, including the edges of the bounding cratonic blocks, is presented. It incorporates seismic reflectivity, seismic velocities, resistivity, and density models. Key results include (1) evidence for west-vergent crustal stacking and exhumation in the eastern Trans-Hudson Orogen in the form of preserved Moho topography and the presence of higher grade (higher velocity) rocks in the hanging wall of an east-dipping crustal stack; (2) definition of the eastward extent of the Archean Sask craton in the subsurface based on distinct lower crustal properties; and (3) 400 m of present-day surface topography and 6–8 km of relief on the Moho are isostatically compensated mainly within the upper mantle by a westward increase in upper mantle temperatures by 40–155 °C and (or) 16–107 km of thinning of the mantle lithosphere.


Sign in / Sign up

Export Citation Format

Share Document