Geophysical transect across a Paleoproterozoic continent–continent collision zone: The Trans-Hudson Orogen

2005 ◽  
Vol 42 (4) ◽  
pp. 385-402 ◽  
Author(s):  
D J White ◽  
M D Thomas ◽  
A G Jones ◽  
J Hope ◽  
B Németh ◽  
...  

A summary and comparison of geophysical data and models for the Trans-Hudson Orogen in northern Manitoba and Saskatchewan are presented. Magnetic total field and Bouguer gravity maps are used to define the along-strike extension of geological domains of the orogen exposed on the Canadian Shield, and a two-dimensional density model is produced, which accounts for the observed variations of the Bouguer gravity field across the orogen. An 800-km-long crustal section across the entire continent–continent collision zone, including the edges of the bounding cratonic blocks, is presented. It incorporates seismic reflectivity, seismic velocities, resistivity, and density models. Key results include (1) evidence for west-vergent crustal stacking and exhumation in the eastern Trans-Hudson Orogen in the form of preserved Moho topography and the presence of higher grade (higher velocity) rocks in the hanging wall of an east-dipping crustal stack; (2) definition of the eastward extent of the Archean Sask craton in the subsurface based on distinct lower crustal properties; and (3) 400 m of present-day surface topography and 6–8 km of relief on the Moho are isostatically compensated mainly within the upper mantle by a westward increase in upper mantle temperatures by 40–155 °C and (or) 16–107 km of thinning of the mantle lithosphere.

1992 ◽  
Vol 29 (3) ◽  
pp. 418-431 ◽  
Author(s):  
Georges Beaudoin ◽  
D. F. Sangster ◽  
C. I. Godwin

In the Kokanee Range, more than 370 Ag–Pb–Zn–Au vein and replacement deposits are hosted by the Middle Jurassic Nelson batholith and surrounding Cambrian to Triassic metasedimentary rocks. The Kokanee Range forms the hanging wall of the Slocan Lake Fault, an Eocene, east-dipping, low-angle normal fault. The Pb isotopic compositions of galenas permit the deposits to be divided into four groups that form linear arrays in tridimensional Pb isotopic space, each group having a distinct geographic distribution that crosses geological boundaries. The Kokanee group Pb is derived from a mixture of local upper crustal country rocks. Ainsworth group Pb and Sandon group Pb plot along a mixing line between a lower crustal Pb reservoir and the upper crustal Pb reservoir. The Ainsworth group Pb isotopic signature is markedly lower crustal, whereas the Sandon group Pb is slightly lower crustal. The Bluebell group Pb plots along a mixing line between a depleted upper mantle Pb reservoir and the lower crustal Pb reservoir.The geographic distribution and the Pb isotopic composition of each group probably reflect deep structures that permitted mixing of lower crustal, upper crustal, and mantle Pb by hydrothermal fluids. Segments of, or fluids derived from, the lower crust and the upper mantle were leached by, or mixed with, evolved meteoric water convecting in the upper crust. Fracture permeability, hydrothermal fluid flow, and mineralization resulted from Eocene crustal extension in southeastern British Columbia.


2017 ◽  
Vol 114 (37) ◽  
pp. 9820-9825 ◽  
Author(s):  
George A. Thompson ◽  
Tom Parsons

In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.


2021 ◽  
Author(s):  
Eric Roots ◽  
Graham Hill ◽  
Ben M. Frieman ◽  
James A. Craven ◽  
Richard S. Smith ◽  
...  

<p>The role of melts and magmatic/metamorphic fluids in mineralization processes is well established. However, the role of crustal architecture in defining source and sink zones in the middle to lower crust remains enigmatic. Integration of three dimensional magnetotelluric (MT) modelling and seismic reflection data across the Archean Abitibi greenstone belt of the Superior Province, Canada, reveals a ‘whole-of-crust’ mineralizing system and highlights the controls by crustal architecture on metallogenetic processes. Electrically conductive conduits in an otherwise resistive upper crust are coincident with truncations and offsets of seismic reflections that are mostly interpreted as major brittle-ductile fault zones. The spatial association between these features and low resistivity zones imaged in the 3D models suggest that these zones acted as pathways through which fluids and melts ascended toward the surface. At mid-crustal levels, these ‘conduit’ zones connect to ~50 km long, north-south striking conductors, and are inferred to represent graphite and/or sulphide deposited from cooling fluids. At upper mantle to lower crustal depths, east-west trending conductive zones dominate and display shallow dips. The upper mantle features are broadly coincident with the surface traces of the major deformation zones with which a large proportion of the gold endowment is associated. We suggest that these deep conductors represent interconnected graphitic zones perhaps augmented by sulphides that are relicts from metamorphic fluid and melt emplacement associated primarily with the later stages of regional deformation.  Thus, from the combined MT and seismic data, we develop a crustal-scale architectural model that is consistent with existing geological and deformational models, providing constraints on the sources for and signatures of fluid and magma emplacement that resulted in widespread metallogenesis in the Abitibi Subprovince.</p>


1982 ◽  
Vol 19 (11) ◽  
pp. 2049-2059 ◽  
Author(s):  
D. H. Hall ◽  
W. C. Brisbin

This paper presents an overview of six geophysical projects (seismic reflection and refraction, gravity and magnetic anomaly interpretation, specific gravity and magnetic property measurements) carried out in an area in Manitoba and northwestern Ontario bounded by 93 and 96°W longitude, and 49 and 51°N latitude.The purpose of the surveys was to define crustal structure in the Kenora–Wabigoon greenstone belt, the Winnipeg River batholithic belt, the Ear Falls – Manigotagan gneiss belt, and the Uchi greenstone belt. The following conclusions emerge.In all of the belts, a major discontinuity divides the crust into the commonly found upper and lower crustal sections. At the top of the lower crust, a seismically distinct layer (the mid-crustal layer) occurs. Seismic velocities in this layer suggest either intermediate to basic igneous rocks or metamorphic rocks of the amphibolite facies.Crustal geophysical characteristics vary sufficiently among the four belts to justify the classification of all four as distinct subprovinces of the Superior Province.Cet article présente une vue générale sur six projets de géophysique (réflexion et réfraction sismique, interprétation d'anomalies de gravité et magnétiques, déterminations de densité et de propriétés magnétiques) réalisés dans une région du Manitoba et du nord-ouest de l'Ontario encadrée par les longitudes 93 et 96°O et les latitudes 49 et 51°N.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lin Chen

The continental lower crust is an important composition- and strength-jump layer in the lithosphere. Laboratory studies show its strength varies greatly due to a wide variety of composition. How the lower crust rheology influences the collisional orogeny remains poorly understood. Here I investigate the role of the lower crust rheology in the evolution of an orogen subject to horizontal shortening using 2D numerical models. A range of lower crustal flow laws from laboratory studies are tested to examine their effects on the styles of the accommodation of convergence. Three distinct styles are observed: 1) downwelling and subsequent delamination of orogen lithosphere mantle as a coherent slab; 2) localized thickening of orogen lithosphere; and 3) underthrusting of peripheral strong lithospheres below the orogen. Delamination occurs only if the orogen lower crust rheology is represented by the weak end-member of flow laws. The delamination is followed by partial melting of the lower crust and punctuated surface uplift confined to the orogen central region. For a moderately or extremely strong orogen lower crust, topography highs only develop on both sides of the orogen. In the Tibetan plateau, the crust has been doubly thickened but the underlying mantle lithosphere is highly heterogeneous. I suggest that the subvertical high-velocity mantle structures, as observed in southern and western Tibet, may exemplify localized delamination of the mantle lithosphere due to rheological weakening of the Tibetan lower crust.


Sign in / Sign up

Export Citation Format

Share Document