The nature of Early Palaeozoic Kwangsian orogenic event in the South China Block: constraints from detrital zircons in Cambrian strata

2020 ◽  
pp. 1-14
Author(s):  
Puliang Lyu ◽  
Yunfeng Wang ◽  
Changliang Lyu ◽  
Fuqiang Yang ◽  
Ke Shi ◽  
...  
2019 ◽  
Vol 157 (4) ◽  
pp. 551-572
Author(s):  
Liang Luo ◽  
Lianbo Zeng ◽  
Kai Wang ◽  
Xiaoxia Yu ◽  
Yihang Li ◽  
...  

AbstractWe report new U–Pb isotopic data for detrital zircons from Cambrian–Ordovician strata on the northern margin of the western Yangtze Block, which together with published U–Pb isotopic data for coeval strata in the South China Block, provide critical constraints on the provenance of these sediments and further shed light on the early Palaeozoic position of the South China Block in the context of Gondwana. Detrital zircons in this study yield four major age peaks in the early Palaeoproterozoic, early Neoproterozoic, middle Neoproterozoic and late Neoproterozoic – early Palaeozoic. The dominant age population of 900–700 Ma matches well with magmatic ages from the nearby Panxi–Hannan Belt, which indicates that Cambrian–Ordovician sedimentary rocks in the western Yangtze Block were mainly of local derivation. However, compilations of detrital zircon ages for the Cambrian–Ordovician strata from the Cathaysia Block and the eastern Yangtze Block show that both blocks are dominated by late Mesoproterozoic- and early Neoproterozoic-aged detrital zircons, which suggests a remarkable exotic input with typical Gondwana signatures. According to the integrated detrital zircon age spectra of the Cambrian–Ordovician sedimentary rocks from the entire South China Block and palaeocurrent data, the South China Block should have been linked with North India and Western Australia within East Gondwana. Specifically, the Cathaysia Block was located adjacent to Western Australia, while the Yangtze Block was connected with North India.


2014 ◽  
Vol 151 (6) ◽  
pp. 975-995 ◽  
Author(s):  
JINBAO SU ◽  
SHUWEN DONG ◽  
YUEQIAO ZHANG ◽  
YONG LI ◽  
XUANHUA CHEN ◽  
...  

AbstractFifteen sandstone samples taken from pre-Cretaceous strata of the Yangtze Block are analysed to constrain the evolution of the South China Block, especially the assembly between the Yangtze and Cathaysia blocks. The results show that the maximum depositional age of the Neoproterozoic Lengjiaxi Group adjacent to the Cathaysia Block isc. 830 Ma, differing from that of the Kunyang and Dahongshan groups (> 960 Ma) on the southwestern margin of the Yangtze Block. The detrital zircons from Palaeozoic samples from the Yangtze Block have similar age populations to those in the Cathaysia Block, and they may originate from the Cathaysia Block according to palaeogeographic, palaeocurrent and former research data. The detrital zircons of Middle–Upper Jurassic sandstones in the southwestern and central Yangtze Block yield dominant age populations at 2.0–1.7 Ga and subordinate groups of 2.6–2.4 Ga, 0.8–0.7 Ga and 0.6–0.4 Ga. The Upper Triassic strata may be derived from the southern Yangtze and North China blocks due to the collisions between the Indosina, South China and North China blocks, whereas the Jurassic sediments may be partly derived from uplift and erosion of the Jiangnan Orogen due to an intracontinental orogeny induced by Pacific subduction towards the Eurasia Plate. The detrital age spectra and provenance data for basement in the South China Block are analysed and compared with each other. The South China Block has affinity with Australia not only in the Columbia supercontinent but also in the Rodinia supercontinent. We infer the existence of an ancient orogen under the western Jiangnan Orogen, which may have occurred during the Columbia age, earlier than the Sibao orogeny. This is supported by seismic profile proof from the SinoProbe.


2020 ◽  
pp. 1-16
Author(s):  
Jie Yang ◽  
Wei Liu ◽  
Zuozhen Han ◽  
Zuoxun Zeng ◽  
Le Wan ◽  
...  

Abstract The South China Block is one of the largest continental blocks located on the East Asian continent. The early Palaeozoic Wuyi–Yunkai orogen of the South China Block (known as the Caledonian orogen in Europe) is a major orogenic belt in East Asia and represents the first episode of extensive crustal reworking since Neoproterozoic time. Although this orogen is key to deciphering the formation and evolution of the South China Block, details about the orogen remain poorly defined. The Songshutang and Wushitou ultramafic–mafic units in southern Jiangxi Province, South China, have 206Pb–238U ages of c. 437 Ma, suggesting a Silurian formation age. All the Songshutang and Wushitou ultramafic–mafic rocks show relatively flat chondrite-normalized rare earth element patterns, depletions in Nb, Ta, Zr, Hf and Ti, and low ϵNd(t) values from −9.12 to −5.49 with negative zircon ϵHf(t) values from −10.84 to −2.58, resembling a typical arc magma affinity. Geochemical and isotopic data indicate that the newly identified ultramafic–mafic rocks, along with the reported Silurian mafic rocks in South China, possibly originated from the similar partial melting of an ancient subducted slab, fluid/sediment and metasomatized lithospheric mantle with varying degrees of fractional crystallization. In conjunction with other records of magmatism and metamorphism in South China, a late-orogenic extensional event led to the melting of the sub-continental lithospheric mantle in Silurian time and generated ultramafic–mafic rocks with a limited distribution along the Wuyi–Yunkai orogen and widespread late-orogenic granitic plutons in the South China Block.


2012 ◽  
Vol 149 (6) ◽  
pp. 1124-1131 ◽  
Author(s):  
LIANG DUAN ◽  
QING-REN MENG ◽  
GUO-LI WU ◽  
SHOU-XIAN MA ◽  
LIN LI

AbstractLA-ICP-MS U–Pb dating of Lower Devonian detrital zircon samples from three representative sections in the South China block yields dominant Grenvillian and Pan-African populations, similar to the age distribution of early Palaeozoic samples from Gondwana, the Tethyan Himalaya and West Australia, in particular. Hf isotopic compositions indicate the contributions of juvenile crust at 1.6 Ga and 2.5 Ga, and bear a resemblance to their counterparts from SE Australia and West Antarctica, revealing the mixed origin of the Pan-African and Grenvillian grains from juvenile magmas and melting of pre-existing crustal rocks. These results suggest that the South China block should be considered an integral part of East Gondwana in early Palaeozoic time, rather than a discrete continental block in the Palaeo-Pacific or a fragment of Laurentia.


2011 ◽  
Vol 19 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Liang Duan ◽  
Qing-Ren Meng ◽  
Cheng-Li Zhang ◽  
Xiao-Ming Liu

2021 ◽  
pp. 1-22
Author(s):  
Farzaneh Shakerardakani ◽  
Franz Neubauer ◽  
Xiaoming Liu ◽  
Yunpeng Dong ◽  
Behzad Monfaredi ◽  
...  

Abstract New detrital U–Pb zircon ages from the Sanandaj–Sirjan metamorphic zone in the Zagros orogenic belt allow discussion of models of the late Neoproterozoic to early Palaeozoic plate tectonic evolution and position of the Iranian microcontinent within a global framework. A total of 194 valid age values from 362 zircon grains were obtained from three garnet-micaschist samples. The most abundant detrital zircon population included Ediacaran ages, with the main age peak at 0.60 Ga. Other significant age peaks are at c. 0.64–0.78 Ga, 0.80–0.91 Ga, 0.94–1.1 Ga, 1.8–2.0 Ga and 2.1–2.5 Ga. The various Palaeozoic zircon age peaks could be explained by sediment supply from sources within the Iranian microcontinent. However, Precambrian ages were found, implying a non-Iranian provenance or recycling of upper Ediacaran–Palaeozoic clastic rocks. Trace-element geochemical fingerprints show that most detrital zircons were sourced from continental magmatic settings. In this study, the late Grenvillian age population at c. 0.94–1.1 Ga is used to unravel the palaeogeographic origin of the Sanandaj–Sirjan metamorphic zone. This Grenvillian detrital age population relates to the ‘Gondwana superfan’ sediments, as found in many Gondwana-derived terranes within the European Variscides and Turkish terranes, but also to units further east, e.g. in the South China block. Biogeographic evidence proves that the Iranian microcontinent developed on the same North Gondwana margin extending from the South China block via Iran further to the west.


2021 ◽  
Vol 217 ◽  
pp. 103605
Author(s):  
Xianzhi Cao ◽  
Nicolas Flament ◽  
Sanzhong Li ◽  
R. Dietmar Müller

Sign in / Sign up

Export Citation Format

Share Document