Ball convergence for a family of eight-order iterative schemes under hypotheses only of the first-order derivative

2019 ◽  
Vol 97 (1-2) ◽  
pp. 444-454
Author(s):  
Ali Saleh Alshomrani ◽  
Ramandeep Behl ◽  
Ioannis K. Argyros
Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1002
Author(s):  
R. A. Alharbey ◽  
Ioannis K. Argyros ◽  
Ramandeep Behl

Problems from numerous disciplines such as applied sciences, scientific computing, applied mathematics, engineering to mention some can be converted to solving an equation. That is why, we suggest higher-order iterative method to solve equations with Banach space valued operators. Researchers used the suppositions involving seventh-order derivative by Chen, S.P. and Qian, Y.H. But, here, we only use suppositions on the first-order derivative and Lipschitz constrains. In addition, we do not only enlarge the applicability region of them but also suggest computable radii. Finally, we consider a good mixture of numerical examples in order to demonstrate the applicability of our results in cases not covered before.


2019 ◽  
Vol 17 (05) ◽  
pp. 1940018 ◽  
Author(s):  
Ramandeep Behl ◽  
Ali Saleh Alshormani ◽  
Ioannis K. Argyros

In this paper, we present a local convergence analysis of some iterative methods to approximate a locally unique solution of nonlinear equations in a Banach space setting. In the earlier study [Babajee et al. (2015) “On some improved harmonic mean Newton-like methods for solving systems of nonlinear equations,” Algorithms 8(4), 895–909], demonstrate convergence of their methods under hypotheses on the fourth-order derivative or even higher. However, only first-order derivative of the function appears in their proposed scheme. In this study, we have shown that the local convergence of these methods depends on hypotheses only on the first-order derivative and the Lipschitz condition. In this way, we not only expand the applicability of these methods but also proposed the theoretical radius of convergence of these methods. Finally, a variety of concrete numerical examples demonstrate that our results even apply to solve those nonlinear equations where earlier studies cannot apply.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Zamir G. Khan ◽  
Amod S. Patil ◽  
Atul A. Shirkhedkar

Four simple, rapid, accurate, precise, reliable, and economical UV-spectrophotometric methods have been proposed for the determination of tadalafil in bulk and in pharmaceutical formulation. “Method A” is first order derivative UV spectrophotometry using amplitude, “method B” is first order derivative UV spectrophotometry using area under curve technique, “method C” is second order derivative UV spectrophotometry using amplitude, and “method D” is second order derivative UV spectrophotometry using area under curve technique. The developed methods have shown best results in terms of linearity, accuracy, precision, and LOD and LOQ for bulk drug and marketed formulation as well. In N,N-dimethylformamide, tadalafil showed maximum absorbance at 284 nm. For “method A” amplitude was recorded at 297 nm while for “method B” area under curve was integrated in the wavelength range of 290.60–304.40 nm. For “method C” amplitude was measured at 284 nm while for “method D” area under curve was selected in the wavelength range of 280.80–286.20 nm. For methods A and B, tadalafil obeyed Lambert-Beer’s law in the range of 05–50 μg/mL while for “methods C and D”, tadalafil obeyed Lambert-Beer’s law in the range of 20–70 μg/mL, and-for “methods A, B, C, and D” the correlation coefficients were found to be > than 0.999.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Vu Dang Hoang ◽  
Dong Thi Ha Ly ◽  
Nguyen Huu Tho ◽  
Hue Minh Thi Nguyen

The application of first-order derivative and wavelet transforms to UV spectra and ratio spectra was proposed for the simultaneous determination of ibuprofen and paracetamol in their combined tablets. A new hybrid approach on the combined use of first-order derivative and wavelet transforms to spectra was also discussed. In this application, DWT (sym6 and haar), CWT (mexh), and FWT were optimized to give the highest spectral recoveries. Calibration graphs in the linear concentration ranges of ibuprofen (12–32 mg/L) and paracetamol (20–40 mg/L) were obtained by measuring the amplitudes of the transformed signals. Our proposed spectrophotometric methods were statistically compared to HPLC in terms of precision and accuracy.


Geophysics ◽  
2021 ◽  
pp. 1-91
Author(s):  
Hang Wang ◽  
Liuqing Yang ◽  
Xingye Liu ◽  
Yangkang Chen ◽  
Wei Chen

The local slope estimated from seismic images has a variety of meaningful applications. Slope estimation based on the plane-wave destruction (PWD) method is one of the widely accepted techniques in the seismic community. However, the PWD method suffers from its sensitivity to noise in the seismic data. We propose an improved slope estimation method based on the PWD theory that is more robust in the presence of strong random noise. The PWD operator derived in the Z-transform domain contains a phase-shift operator in space corresponding to the calculation of the first-order derivative of the wavefield in the space domain. The first-order derivative is discretized based on a forward finite difference in the traditional PWD method, which lacks the constraint from the backward direction. We propose an improved method by discretizing the first-order space derivative based on an averaged forward-backward finite-difference calculation. The forward-backward space derivative calculation makes the space-domain first-order derivative more accurate and better anti-noise since it takes more space grids for the derivative calculation. In addition, we introduce non-stationary smoothing to regularize the slope estimation and to make it even more robust to noise. We demonstrate the performance of the new slope estimation method by several synthetic and field data examples in different applications, including 2D/3D structural filtering, structure-oriented deblending, and horizon tracking.


Sign in / Sign up

Export Citation Format

Share Document