Effects of robotic neurorehabilitation through lokomat plus virtual reality on cognitive function in patients with traumatic brain injury: A retrospective case-control study

2019 ◽  
Vol 130 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Maria Grazia Maggio ◽  
Michele Torrisi ◽  
Antonio Buda ◽  
Rosaria De Luca ◽  
Denise Piazzitta ◽  
...  
2017 ◽  
Vol 31 (4) ◽  
pp. 306-312 ◽  
Author(s):  
Yoshitaka Suzuki ◽  
Caroline Arbour ◽  
Samar Khoury ◽  
Jean-François Giguère ◽  
Ronald Denis ◽  
...  

2015 ◽  
Vol 16 (5) ◽  
pp. 508-514 ◽  
Author(s):  
Maroun J. Mhanna ◽  
Wael EI Mallah ◽  
Margaret Verrees ◽  
Rajiv Shah ◽  
Dennis M. Super

OBJECT Decompressive craniectomy (DC) for the management of severe traumatic brain injury (TBI) is controversial. The authors sought to determine if DC improves the outcome of children with severe TBI. METHODS In a retrospective, case-control study, medical records of all patients admitted to the pediatric ICU between May 1998 and May 2008 with severe TBI and treated with DC were identified and matched to patients who were treated medically without DC. Medical records were reviewed for patients’ demographic data and baseline characteristics. RESULTS During the study period, 17 patients with severe TBI treated with DC at a median of 2 hours (interquartile range [IQR] 1–14 hours) after admission were identified and matched to 17 contemporary controls. On admission, there were no differences between DC and control patients regarding age (10.2 ± 5.9 years vs 12.4 ± 5.4 years, respectively [mean ± SD]), sex, weight, Glasgow Coma Scale score (median 5 [IQR 3–7] vs 4 [IQR 3–6], respectively; p = 0.14), or the highest intracranial pressure (median 42 [IQR 22–54] vs 30 [IQR 21–36], respectively; p = 0.77). However, CT findings were significant for a higher rate of herniation and cerebral edema among patients with DC versus controls (7/17 vs 2/17, respectively, had herniation [p = 0.05] and 14/17 vs 6/17, respectively, had cerebral edema [p = 0.006]). Overall there were no significant differences in survival between patients with DC and controls (71% [12/17] vs 82% [14/17], respectively; p = 0.34). However, among survivors, at 4 years (IQR 1–6 years) after the TBI, 42% (5/12) of the DC patients had mild disability or a Glasgow Outcome Scale score of 5 vs none (0/14) of the controls (p = 0.012). CONCLUSIONS In this retrospective, small case-control study, the authors have shown that early DC in pediatric patients with severe TBI improves outcome in survivors. Future prospective randomized controlled studies are needed to confirm these findings.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 795
Author(s):  
Gilbert Koome ◽  
Faith Thuita ◽  
Thaddaeus Egondi ◽  
Martin Atela

Background: Low and medium income countries (LMICs) such as Kenya experience nearly three times more cases of traumatic brain injury (TBI) compared to high income countries (HICs). This is primarily exacerbated by weak health systems especially at the pre-hospital care level. Generating local empirical evidence on TBI patterns and its influence on patient mortality outcomes is fundamental in informing the design of trauma-specific emergency medical service (EMS) interventions at the pre-hospital care level. This study determines the influence of TBI patterns and mortality. Methods: This was a case-control study with a sample of 316 TBI patients. Data was abstracted from medical records for the period of January 2017 to March 2019 in three tertiary trauma care facilities in Kenya. Logistic regression was used to assess influence of trauma patterns on TBI mortality, controlling for patient characteristics and other potential confounders. Results: The majority of patients were aged below 40 years (73%) and were male (85%). Road traffic injuries (RTIs) comprised 58% of all forms of trauma. Blunt trauma comprised 71% of the injuries. Trauma mechanism was the only trauma pattern significantly associated with TBI mortality. The risk of dying for patients sustaining RTIs was 2.83 times more likely compared to non-RTI patients [odds ratio (OR) 2.83, 95% confidence interval (CI) 1.62-4.93, p=0.001]. The type of transfer to hospital was also significantly associated with mortality outcome, with a public hospital having a two times higher risk of death compared to a private hospital [OR 2.18 95%CI 1.21-3.94, p<0.009]. Conclusion: Trauma mechanism (RTI vs non-RTI) and type of tertiary facility patients are transferred to (public vs private) are key factors influencing TBI mortality burden. Strengthening local EMS trauma response systems targeting RTIs augmented by adequately resourced and equipped public facilities to provide quality lifesaving interventions can reduce the burden of TBIs.


Epilepsia ◽  
2015 ◽  
Vol 56 (9) ◽  
pp. 1438-1444 ◽  
Author(s):  
Benno Mahler ◽  
Sofia Carlsson ◽  
Tomas Andersson ◽  
Cecilia Adelöw ◽  
Anders Ahlbom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document