Saliva cortisol levels and vital signs fluctuations in mild Traumatic Brain Injury patients compared to controls

Author(s):  
Eleni Daneva ◽  
Konstantinos Makris ◽  
Anna Korompeli ◽  
Olav Muurlink ◽  
Ioannis Kaklamanos ◽  
...  
2016 ◽  
Vol 82 (10) ◽  
pp. 898-902 ◽  
Author(s):  
Alexander C. Schwed ◽  
Monica M. Boggs ◽  
Drew Watanabe ◽  
David S. Plurad ◽  
Brant A. Putnam ◽  
...  

Consensus is lacking for ideal management of mild traumatic brain injury (mTBI) with intracranial hemorrhage (ICH). Patients are often monitored in the intensive care unit (ICU) without additional interventions. We sought to identify admission variables associated with a favorable outcome (ICU admission for 24 hours, no neurosurgical interventions, no complications or mortality) to divert these patients to a non-ICU setting in the future. We reviewed all patients with mTBI [Glasgow Coma Scale (GCS) = 13–15] and concomitant ICH between July 1, 2012, and June 30, 2015. Variables collected included demographics, vital signs, neurologic examination, imaging results, ICU course, mortality, and disposition. Of 201 patients, 78 (39%) had a favorable outcome. On univariate analysis, these patients were younger, more often had an isolated subarachnoid hemorrhage, and were more likely to have a GCS of 15 at admission. On multivariate regression analysis, after controlling for admission blood pressure, time to CT scan, and Marshall Score, age <55, GCS of 15 on arrival to the ICU, and isolated subarachnoid hemorrhage remained independent predictors of a favorable outcome. Patients meeting these criteria after mTBI with ICH likely do not require ICU-level care.


2019 ◽  
pp. 1-14
Author(s):  
Suzanne Barker-Collo ◽  
Alice Theadom ◽  
Kelly Jones ◽  
Nicola Starkey ◽  
Kris Fernando ◽  
...  

Abstract Background: Emerging data suggest that recovery from mild traumatic brain injury (mTBI) takes longer than previously thought. This paper examines trajectories for cognitive recovery up to 48 months post-mTBI, presenting these visually using a Sankey diagram and growth curve analysis. Methods: This sample (n = 301) represents adults (≥16 years) from a population-based Brain Injury Outcomes in the New Zealand Community study over a 4-year follow-up on the CNS-Vital Signs neuropsychological test. Data were collected within 2 weeks of injury, and then at 1, 6, 12 and 48 months post-injury. Results: Significant improvement in cognitive functioning was seen up to 6 months post-injury. Using growth curve modelling, we found significant improvements in overall neurocognition from baseline to 6 months, on average participants improved one point per month (0.9; 95% CI 0.42–1.39) p < 0.001. No change in neurocognition was found within the time periods 6–12 months or 12–48 months. The Sankey highlighted that at each time point, a small proportion of participants remained unchanged or declined. Proportionally, few show any improvement after the first 6 months. Conclusion: Most individuals remained stable or improved over time to 6 months post-injury. Summary statistics are informative regarding overall trends, but can mask differing trajectories for recovery. The Sankey diagram indicates that not all improve, as well as the potential impact of individuals moving in and out of the study. The Sankey diagram also indicated the level of functioning of those most likely to withdraw, allowing targeting of retention strategies.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Rama Priyanka Nagireddi ◽  
Htet Htet Win ◽  
Sarah Wagstaff ◽  
Moira Neal ◽  
Kathryn Friedman ◽  
...  

Abstract Introduction: Mild Traumatic Brain Injury (mTBI) is associated with anterior pituitary hormone dysfunction. The potential long-term effect of this injury on pituitary function in Veterans is not clear. We reviewed the utility of the fixed dose Glucagon Stimulation Test (GST) compared with the high dose Cosyntropin Stimulation test (CST) for hypothalamic-pituitary-adrenal (HPA) reserve over time in these patients with mTBI. Methods: We present an interim report of our 4-year longitudinal prospective pilot study of pituitary function in Veterans diagnosed with mTBI. Of the 34 mTBI Veterans enrolled, we have tested 28 of them (4 female, 24 male; age and BMI, 31.5±7.0 years and 30.4±6.2, mean±SD, respectively) for baseline pituitary hormone levels and cortisol response to the CST. In 22 subjects growth hormone and cortisol responses to GST were tested at baseline (Year 0). Follow-up testing was done for 18 mTBI subjects in Year 1, 13 subjects in Year 2, 10 subjects in Year 3 and 5 subjects in Year 4. The same baseline data were obtained for 14 age-, sex-, deployment- and BMI-matched control subjects without mTBI (2 female,12 male; age and BMI 34.4±6.8 years and 30.5±4.9, mean±SD, respectively). Cortisol cutoffs of &lt;18 mcg/dL with the CST and &lt;9.0 mcg/dL with the GST were used for the diagnosis of adrenal insufficiency. Results: Secondary adrenal insufficiency (AI), likely partial, was identified during this study on 6 occasions: 3/22 subjects at Year 0, 1/18 at Year 1, 0/13 at Year 2, 1/10 at Year 3 and 1/5 at Year 4. Two baseline subjects with AI reverted to normal in Years 1-3, one relapsed in Year 4 and a third had no further testing. Correlations of the cortisol levels from GST vs the 60-minute cortisol from CST were significant at Year 0 (n=22, r=0.553, p=0.008) and at Year 1 (n=18, r=0.802, p&lt;0.0001). Due to decreased numbers, there were no significant correlations at Years 2 through 4. Similar correlations were obtained using the 30-minute CST values. However, the CST cortisol value predicted the low GST value in only 2/6 subjects. The mean GST cortisol levels and 60-minute CST cortisol levels for subjects at each year were not significantly different over Years 0 through 4 based on ANOVA analyses (CST: F=1.519, p= 0.206; GST: F= 0.796, p=0.532). Conclusions: Secondary adrenal insufficiency, likely partial, related to mTBI was detected by GST on 6 occasions (twice in one patient) over 4 years of observation. GST can provide useful information about HPA axis reserve, and appears to be more reliable than CST. Identification of potential secondary adrenal insufficiency using the GST in Veterans with mTBI can provide a beneficial combined test for these patients when other testing is not feasible.


2019 ◽  
Vol 28 (3) ◽  
pp. 1363-1370 ◽  
Author(s):  
Jessica Brown ◽  
Katy O'Brien ◽  
Kelly Knollman-Porter ◽  
Tracey Wallace

Purpose The Centers for Disease Control and Prevention (CDC) recently released guidelines for rehabilitation professionals regarding the care of children with mild traumatic brain injury (mTBI). Given that mTBI impacts millions of children each year and can be particularly detrimental to children in middle and high school age groups, access to universal recommendations for management of postinjury symptoms is ideal. Method This viewpoint article examines the CDC guidelines and applies these recommendations directly to speech-language pathology practices. In particular, education, assessment, treatment, team management, and ongoing monitoring are discussed. In addition, suggested timelines regarding implementation of services by speech-language pathologists (SLPs) are provided. Specific focus is placed on adolescents (i.e., middle and high school–age children). Results SLPs are critical members of the rehabilitation team working with children with mTBI and should be involved in education, symptom monitoring, and assessment early in the recovery process. SLPs can also provide unique insight into the cognitive and linguistic challenges of these students and can serve to bridge the gap among rehabilitation and school-based professionals, the adolescent with brain injury, and their parents. Conclusion The guidelines provided by the CDC, along with evidence from the field of speech pathology, can guide SLPs to advocate for involvement in the care of adolescents with mTBI. More research is needed to enhance the evidence base for direct assessment and treatment with this population; however, SLPs can use their extensive knowledge and experience working with individuals with traumatic brain injury as a starting point for post-mTBI care.


Author(s):  
Christine Parrish ◽  
Carole Roth ◽  
Brooke Roberts ◽  
Gail Davie

Abstract Background: Mild traumatic brain injury (mTBI) is recognized as the signature injury of the current conflicts in Iraq and Afghanistan, yet there remains limited understanding of the persisting cognitive deficits of mTBI sustained in combat. Speech-language pathologists (SLPs) have traditionally been responsible for evaluating and treating the cognitive-communication disorders following severe brain injuries. The evaluation instruments historically used are insensitive to the subtle deficits found in individuals with mTBI. Objectives: Based on the limited literature and clinical evidence describing traditional and current tests for measuring cognitive-communication deficits (CCD) of TBI, the strengths and weaknesses of the instruments are discussed relative to their use with mTBI. It is necessary to understand the nature and severity of CCD associated with mTBI for treatment planning and goal setting. Yet, the complexity of mTBI sustained in combat, which often co-occurs with PTSD and other psychological health and physiological issues, creates a clinical challenge for speech-language pathologists worldwide. The purpose of the paper is to explore methods for substantiating the nature and severity of CCD described by service members returning from combat. Methods: To better understand the nature of the functional cognitive-communication deficits described by service members returning from combat, a patient questionnaire and a test protocol were designed and administered to over 200 patients. Preliminary impressions are described addressing the nature of the deficits and the challenges faced in differentiating the etiologies of the CCD. Conclusions: Speech-language pathologists are challenged with evaluating, diagnosing, and treating the cognitive-communication deficits of mTBI resulting from combat-related injuries. Assessments that are sensitive to the functional deficits of mTBI are recommended. An interdisciplinary rehabilitation model is essential for differentially diagnosing the consequences of mTBI, PTSD, and other psychological and physical health concerns.


2015 ◽  
Vol 26 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Sara C. Schroeder ◽  
Ronald M. Ruff ◽  
Lutz Jäncke

The aim of this study was to examine the effect of posttraumatic stress disorder (PTSD) on (a) neuropsychological test performance and (b) self-reported emotional complaints within individuals suffering from postconcussional disorder (PCD) after a mild traumatic brain injury (MTBI). A two-group comparative research design was employed. Two MTBI samples with and without PTSD were assessed with a neuropsychological test battery and the Ruff Neurobehavioral Inventory (RNBI). On the neurocognitive test performances no significant between group differences were found, but the MTBI group with PTSD endorsed a significantly greater number of emotional complaints, especially in the RNBI subscales of anxiety and depression. The patients with PTSD also endorsed a significantly greater number of premorbid sequelae in the RNBI emotional composite scale as well as the RNBI premorbid subscales of pain, anxiety and abuse. In sum, PTSD has a negative impact on emotional but not cognitive functioning within individuals suffering from PCD after a mild TBI.


Sign in / Sign up

Export Citation Format

Share Document