Economic production quantity (EPQ) model with partial backordering and a discount for imperfect quality batches

2018 ◽  
Vol 56 (18) ◽  
pp. 6279-6293 ◽  
Author(s):  
Luiza Ribeiro Alves Cunha ◽  
Ana Paula Santos Delfino ◽  
Kamila Almeida dos Reis ◽  
Adriana Leiras
2012 ◽  
Vol 22 (2) ◽  
pp. 313-336 ◽  
Author(s):  
Deng-Maw Tsai ◽  
Ji-Cheng Wu

The classical economic production quantity (EPQ) model assumes that items produced are of perfect quality and the production rate is constant. However, production quality depends on the condition of the process. Due to process deterioration or other factors, the production process may shift and produce imperfect quality items. These imperfect quality items sometimes can be reworked and repaired; hence, overall production-inventory costs can be reduced significantly. In addition, it can be found in practice that the time or cost required to repetitively produce a unit of a product decreases when the number of units produced by a worker or a group of workers increases. Under this circumstance, the unit production cost cannot be regarded as constant and, therefore, cannot be ignored when taking account of the total cost. This paper incorporates the effects of learning and the reworking of defective items on the EPQ model since they were not considered in existing models. An optimal operation policy that minimizes the expected total cost per unit time is derived. A numerical example is provided to illustrate the proposed model. In addition, sensitivity analysis is performed and discussed.


2006 ◽  
Vol 2006 ◽  
pp. 1-5 ◽  
Author(s):  
Yung-Fu Huang

Chiu studied the effect of service-level constraint on the economic production quantity (EPQ) model with random defective rate. In this note, we will offer a simple algebraic approach to replace his differential calculus skill to find the optimal solution under the expected annual cost minimization.


2008 ◽  
Vol 25 (03) ◽  
pp. 301-315 ◽  
Author(s):  
S. PANDA ◽  
S. SAHA ◽  
M. BASU

A single item, single cycle economic production quantity model for perishable products is proposed where the demand is two-component and stock dependent. The production inventory scenario of products like cake, bread, fast foods, fishes, garments, cosmetics etc in the festival season is considered. The profit function is formulated under the assumption that the time period of the festival seasons is fixed and the display capacity of the produced item is limited. In the formulation process, to introduce more flexibility, a goal programming technique is incorporated to achieve the producer's desired profit and stock of as much inventory as possible below the display capacity level. A numerical example is presented to illustrate the proposed model. A sensitivity analysis of the model is also carried out.


2016 ◽  
Vol 15 (1) ◽  
pp. 78 ◽  
Author(s):  
Nurike Oktavia ◽  
Henmaidi Henmaidi ◽  
Jonrinaldi Jonrinaldi

The most popular inventory model to determine production lot size is Economic Production Quantity (EPQ). It shows enterprise how to minimize total production cost by reducing inventory cost. But, three main parameters in EPQ which are demand, machine set up cost, and holding cost, are not suitable to solve issues nowadays. When an enterprise has two types of demand, continue and discrete demand, the basic EPQ would be no longer useful. Demand continues comes from a customer who wants their needs to be fulfilled every time per unit time, while the fulfillment of demand discrete is at a fixed interval of time. A literature review is done by writers to observe other formulation of EPQ model. As there is no other research can be found which adopt this topic, this study tries to develop EPQ model considering two types of demand simultaneously.


2014 ◽  
Vol 556-562 ◽  
pp. 6616-6619
Author(s):  
Jun Chen ◽  
Lai Fu Ye

Based on Economic Production Quantity (EPQ) model with certain defective rate, this paper analyses technology patent storage problems in university-enterprise cooperation under the perspective of consumer electronics enterprise, finds out the optimal number and cycle of patent research considering the factor of research and development failure rate.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Nita H. Shah ◽  
Dushyantkumar G. Patel ◽  
Digeshkumar B. Shah

Economic production quantity (EPQ) inventory model for trended demand has been analyzed with rework facility and stochastic preventive machine time. Due to the complexity of the model, search method is proposed to determine the best optimal solution. A numerical example and sensitivity analysis are carried out to validate the proposed model. From the sensitivity analysis, it is observed that the rate of change of demand has significant impact on the optimal inventory cost. The model is very sensitive to the production and demand rate.


Sign in / Sign up

Export Citation Format

Share Document