Distributed design for active fault diagnosis

Author(s):  
Ondřej Straka ◽  
Ivo Punčochář
Author(s):  
Niels Poulsen ◽  
Henrik Niemann

Active Fault Diagnosis Based on Stochastic TestsThe focus of this paper is on stochastic change detection applied in connection with active fault diagnosis (AFD). An auxiliary input signal is applied in AFD. This signal injection in the system will in general allow us to obtain a fast change detection/isolation by considering the output or an error output from the system. The classical cumulative sum (CUSUM) test will be modified with respect to the AFD approach applied. The CUSUM method will be altered such that it will be able to detect a change in the signature from the auxiliary input signal in an (error) output signal. It will be shown how it is possible to apply both the gain and the phase change of the output signal in CUSUM tests. The method is demonstrated using an example.


2020 ◽  
Vol 69 (4) ◽  
pp. 3590-3603
Author(s):  
Antonio Lopes ◽  
Rui Esteves Araujo

2019 ◽  
Vol 9 (19) ◽  
pp. 4010 ◽  
Author(s):  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

Fault-tolerant control is becoming an interesting topic because of its reliability and safety. This paper reports an active fault-tolerant control method for a quadcopter unmanned aerial vehicle (UAV) to handle actuator faults, disturbances, and input constraints. A robust fault diagnosis based on the H ∞ scheme was designed to estimate the magnitude of a time-varying fault in the presence of disturbances with unknown upper bounds. Once the fault estimation was complete, a fault-tolerant control scheme was proposed for the attitude system, using adaptive sliding mode backstepping control to accommodate the actuator faults, despite actuator saturation limitation and disturbances. The Lyapunov theory was applied to prove the robustness and stability of the closed-loop system under faulty operation. Simulation results show the effectiveness of the fault diagnosis scheme and proposed controller for handling actuator faults.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4475
Author(s):  
Zhao Zhang ◽  
Xiao He

Fault diagnosis techniques can be classified into passive and active types. Passive approaches only utilize the original input and output signals of the system. Because of the small amplitudes, the characteristics of incipient faults are not fully represented in the data of the system, so it is difficult to detect incipient faults by passive fault diagnosis techniques. In contrast, active methods can design auxiliary signals for specific faults and inject them into the system to improve fault diagnosis performance. Therefore, active fault diagnosis techniques are utilized in this article to detect and isolate incipient faults based on the fault structure. A new framework based on observer approach for active fault diagnosis is proposed and the geometric approach based fault diagnosis observer is introduced to active fault diagnosis for the first time. Based on the dynamic equations of residuals, auxiliary signals are designed to enhance the diagnosis performance for incipient faults that have specific structures. In addition, the requirements that auxiliary signals need to meet are discussed. The proposed method can realize the seamless combination of active fault diagnosis and passive fault diagnosis. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed approach, and it is indicated that the proposed method significantly improves the accuracy of the diagnosis for incipient faults.


Sign in / Sign up

Export Citation Format

Share Document