Grip Force-Load Force Coupling Is Influenced by Altered Visual Feedback about Object Kinematics

2019 ◽  
Vol 52 (5) ◽  
pp. 612-624 ◽  
Author(s):  
Francis M. Grover ◽  
Sarah M. Schwab ◽  
Michael A. Riley
2019 ◽  
Vol 122 (6) ◽  
pp. 2304-2315
Author(s):  
Francis M. Grover ◽  
Sarah M. Schwab ◽  
Paula L. Silva ◽  
Tamara Lorenz ◽  
Michael A. Riley

The grip force applied to maintain grasp of a handheld object has been typically reported as tightly coupled to the load force exerted by the object as it is actively manipulated, occurring proportionally and consistently in phase with changes in load force. However, continuous grip force-load force coupling breaks down when overall load force levels and oscillation amplitudes are lower (Grover F, Lamb M, Bonnette S, Silva PL, Lorenz T, Riley MA. Exp Brain Res 236: 2531–2544, 2018) or more predictable (Grover FM, Nalepka P, Silva PL, Lorenz T, Riley MA. Exp Brain Res 237: 687–703, 2019). Under these circumstances, grip force is instead only intermittently coupled to load force; continuous coupling is prompted only when load force levels or variations become sufficiently high or unpredictable. The current study investigated the nature of the transition between continuous and intermittent modes of grip force control by scaling the load force level and the oscillation amplitude continuously in time by means of scaling the required frequency of movement oscillations. Participants grasped a cylindrical object between the thumb and forefinger and oscillated their arm about the shoulder in the sagittal plane. Oscillation frequencies were paced with a metronome that scaled through an ascending or descending frequency progression. Due to greater accelerations, faster frequencies produced greater overall load force levels and more pronounced load oscillations. We observed smooth but nonlinear transitions between clear regimes of intermittent and continuous grip force-load force coordination, for both scaling directions, indicating that grip force control can flexibly reorganize as parameters affecting grasp (e.g., variations in load force) change over time. NEW & NOTEWORTHY Grip force (GF) is synchronously coupled to changing load forces (LF) during object manipulation when LF levels are high or unpredictable, but only intermittently coupled to LF during less challenging grasp conditions. This study characterized the nature of transitions between synchronous and intermittent GF-LF coupling, revealing a smooth but nonlinear change in intermittent GF modulation in response to continuous scaling of LF amplitude. Intermittent, “drift-and-act” control may provide an alternative framework for understanding GF-LF coupling.


2005 ◽  
Vol 163 (3) ◽  
pp. 324-334 ◽  
Author(s):  
Olivier White ◽  
Joseph McIntyre ◽  
Anne-Sophie Augurelle ◽  
Jean-Louis Thonnard

NeuroImage ◽  
2005 ◽  
Vol 25 (1) ◽  
pp. 243-252 ◽  
Author(s):  
H. Boecker ◽  
A. Lee ◽  
M. Mühlau ◽  
A. Ceballos-Baumann ◽  
A. Ritzl ◽  
...  

Author(s):  
Mitsuo Kawato ◽  
Tomoe Kuroda ◽  
Hiroshi Imamizu ◽  
Eri Nakano ◽  
Satoru Miyauchi ◽  
...  

Author(s):  
Ross Parry ◽  
Fabrice R Sarlegna ◽  
Nathanaël Jarrassé ◽  
Agnes Roby-Brami

The purpose of this study was to determine the contributions of feedforward and feedback processes on grip force regulation and object orientation during functional manipulation tasks. One patient with massive somatosensory loss resulting from large fibre sensory neuropathy, and ten control participants were recruited. Three experiments were conducted: 1) perturbation to static holding; 2) discrete vertical movement; and 3) functional grasp and place. The availability of visual feedback was also manipulated to assess the nature of compensatory mechanisms. Results from experiment 1 indicated that both the deafferented patient and controls used anticipatory grip force adjustments prior to self-induced perturbation to static holding. The patient exhibited increased grip response time, but the magnitude of grip force adjustments remained correlated with perturbation forces in the self-induced and external perturbation conditions. In experiment 2, the patient applied peak grip force substantially in advance of maximum load force. Unlike controls, the patient's ability to regulate object orientation was impaired without visual feedback. In experiment 3, the duration of unloading, transport and release phases were longer for the patient, with increased deviation of object orientation at phase transitions. These findings show that the deafferented patient uses distinct modes of anticipatory control according to task constraints, and that responses to perturbations are mediated by alternative afferent information. The loss of somatosensory feedback thus appears to impair control of object orientation, while variation in the temporal organization of functional tasks may reflect strategies to mitigate object instability associated with changes in movement dynamics.


2017 ◽  
Author(s):  
Olivier White ◽  
Jean-Louis Thonnard ◽  
Philippe Lefèvre ◽  
Joachim Hermsdörfer

AbstractOne remarkable capacity when we grasp and manipulate tools relies on the ability to predict the grip force required to handle them in relation to their mechanical properties and the surrounding environment. However, rapid changes in the dynamical context may constitute a substantial challenge. Here, we test how participants can switch between different and never experienced dynamical environments induced by centrifugation of the body. Seven subjects lifted an object four times in a row successively in 1, 1.5, 2, 2.5, 2, 1.5 and 1g. We continuously measured grip force, load force and the gravitoinertial acceleration that was aligned with body axis (perceived gravity). Participants adopted stereotyped grasping movements immediately upon entry in a new environment and needed only one trial to adapt grip forces to a stable performance in each new gravity environment. While participants predictively applied larger grip forces when they expected increasing gravity steps, they did not decrease grip force proportionally when they expected decreasing gravity steps, indicating imperfect anticipation in that condition. The subjects’ performance could rather be explained by a combination of successful scaling of grip force according to gravity changes and a separate safety factor. The data suggest that in highly unfamiliar dynamic environments, grip force regulation is characterized by a combination of a successful anticipation of the experienced environmental condition, a safety factor reflecting strategic response to uncertainties about the environment and rapid feedback mechanisms to optimize performance under constant conditions.


2010 ◽  
Vol 104 (2) ◽  
pp. 641-653 ◽  
Author(s):  
Fabrice R. Sarlegna ◽  
Gabriel Baud-Bovy ◽  
Frédéric Danion

When we manipulate an object, grip force is adjusted in anticipation of the mechanical consequences of hand motion (i.e., load force) to prevent the object from slipping. This predictive behavior is assumed to rely on an internal representation of the object dynamic properties, which would be elaborated via visual information before the object is grasped and via somatosensory feedback once the object is grasped. Here we examined this view by investigating the effect of delayed visual feedback during dextrous object manipulation. Adult participants manually tracked a sinusoidal target by oscillating a handheld object whose current position was displayed as a cursor on a screen along with the visual target. A delay was introduced between actual object displacement and cursor motion. This delay was linearly increased (from 0 to 300 ms) and decreased within 2-min trials. As previously reported, delayed visual feedback altered performance in manual tracking. Importantly, although the physical properties of the object remained unchanged, delayed visual feedback altered the timing of grip force relative to load force by about 50 ms. Additional experiments showed that this effect was not due to task complexity nor to manual tracking. A model inspired by the behavior of mass-spring systems suggests that delayed visual feedback may have biased the representation of object dynamics. Overall, our findings support the idea that visual feedback of object motion can influence the predictive control of grip force even when the object is grasped.


2008 ◽  
Vol 103 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Stephen S. Cheung ◽  
Luke F. Reynolds ◽  
Mark A. B. Macdonald ◽  
Constance L. Tweedie ◽  
Robin L. Urquhart ◽  
...  

2006 ◽  
Vol 95 (2) ◽  
pp. 922-931 ◽  
Author(s):  
David E. Vaillancourt ◽  
Mary A. Mayka ◽  
Daniel M. Corcos

The cerebellum, parietal cortex, and premotor cortex are integral to visuomotor processing. The parameters of visual information that modulate their role in visuomotor control are less clear. From motor psychophysics, the relation between the frequency of visual feedback and force variability has been identified as nonlinear. Thus we hypothesized that visual feedback frequency will differentially modulate the neural activation in the cerebellum, parietal cortex, and premotor cortex related to visuomotor processing. We used functional magnetic resonance imaging at 3 Tesla to examine visually guided grip force control under frequent and infrequent visual feedback conditions. Control conditions with intermittent visual feedback alone and a control force condition without visual feedback were examined. As expected, force variability was reduced in the frequent compared with the infrequent condition. Three novel findings were identified. First, infrequent (0.4 Hz) visual feedback did not result in visuomotor activation in lateral cerebellum (lobule VI/Crus I), whereas frequent (25 Hz) intermittent visual feedback did. This is in contrast to the anterior intermediate cerebellum (lobule V/VI), which was consistently active across all force conditions compared with rest. Second, confirming previous observations, the parietal and premotor cortices were active during grip force with frequent visual feedback. The novel finding was that the parietal and premotor cortex were also active during grip force with infrequent visual feedback. Third, right inferior parietal lobule, dorsal premotor cortex, and ventral premotor cortex had greater activation in the frequent compared with the infrequent grip force condition. These findings demonstrate that the frequency of visual information reduces motor error and differentially modulates the neural activation related to visuomotor processing in the cerebellum, parietal cortex, and premotor cortex.


2018 ◽  
Vol 237 (3) ◽  
pp. 687-703 ◽  
Author(s):  
Francis M. Grover ◽  
Patrick Nalepka ◽  
Paula L. Silva ◽  
Tamara Lorenz ◽  
Michael A. Riley

Sign in / Sign up

Export Citation Format

Share Document