scholarly journals The Role of Primary Motor Cortex: More Than Movement Execution

2020 ◽  
pp. 1-17
Author(s):  
Sagarika Bhattacharjee ◽  
Rajan Kashyap ◽  
Turki Abualait ◽  
Shen-Hsing Annabel Chen ◽  
Woo-Kyoung Yoo ◽  
...  
2020 ◽  
Vol 598 (4) ◽  
pp. 839-851 ◽  
Author(s):  
Giovanna Pilurzi ◽  
Francesca Ginatempo ◽  
Beniamina Mercante ◽  
Luigi Cattaneo ◽  
Giovanni Pavesi ◽  
...  

2005 ◽  
Vol 93 (2) ◽  
pp. 1099-1103 ◽  
Author(s):  
Alain Kaelin-Lang ◽  
Lumy Sawaki ◽  
Leonardo G. Cohen

Motor training consisting of repetitive thumb movements results in encoding of motor memories in the primary motor cortex. It is not known if proprioceptive input originating in the training movements is sufficient to produce this effect. In this study, we compared the ability of training consisting of voluntary (active) and passively-elicited (passive) movements to induce this form of plasticity. Active training led to successful encoding accompanied by characteristic changes in corticomotor excitability, while passive training did not. These results support a pivotal role for voluntary motor drive in coding motor memories in the primary motor cortex.


2018 ◽  
Vol 38 (6) ◽  
pp. 1430-1442 ◽  
Author(s):  
Atsushi Yokoi ◽  
Spencer A. Arbuckle ◽  
Jörn Diedrichsen

2019 ◽  
Vol 30 (5) ◽  
pp. 3087-3101 ◽  
Author(s):  
Pranav J Parikh ◽  
Justin M Fine ◽  
Marco Santello

Abstract Dexterous object manipulation is a hallmark of human evolution and a critical skill for everyday activities. A previous work has used a grasping context that predominantly elicits memory-based control of digit forces by constraining where the object should be grasped. For this “constrained” grasping context, the primary motor cortex (M1) is involved in storage and retrieval of digit forces used in previous manipulations. In contrast, when choice of digit contact points is allowed (“unconstrained” grasping), behavioral studies revealed that forces are adjusted, on a trial-to-trial basis, as a function of digit position. This suggests a role of online feedback of digit position for force control. However, despite the ubiquitous nature of unconstrained hand–object interactions in activities of daily living, the underlying neural mechanisms are unknown. Using noninvasive brain stimulation, we found the role of primary motor cortex (M1) and somatosensory cortex (S1) to be sensitive to grasping context. In constrained grasping, M1 but not S1 is involved in storing and retrieving learned digit forces and position. In contrast, in unconstrained grasping, M1 and S1 are involved in modulating digit forces to position. Our findings suggest that the relative contribution of memory and online feedback modulates sensorimotor cortical interactions for dexterous manipulation.


2007 ◽  
Vol 97 (3) ◽  
pp. 2511-2515 ◽  
Author(s):  
Michelle L. Harris-Love ◽  
Monica A. Perez ◽  
Robert Chen ◽  
Leonardo G. Cohen

Interhemispheric inhibitory interactions (IHI) operate between homologous distal hand representations in primary motor cortex (M1). It is not known whether proximal arm representations exhibit comparable effects on their homologous counterparts. We studied IHI in different arm representations, targeting triceps brachii (TB, n = 13), first dorsal interosseous (FDI, n = 13), and biceps brachii (BB, n = 7) muscles in healthy volunteers. Transcranial magnetic stimulation test stimuli (TS) were delivered to M1 contralateral to the target muscle preceded 10 ms by a conditioning stimulus (CS) to the opposite M1 at 110–150% resting motor threshold (RMT). IHI was calculated as the ratio between motor-evoked potential (MEP) amplitudes in conditioned relative to unconditioned trials. Mean RMTs were 38.9, 46.9, and 46.0% of stimulator output in FDI, TB, and BB muscles, respectively. IHI was 0.45 ± 0.41 (FDI), 0.78 ± 0.38 (TB), and 0.52 ± 0.32 (BB, P < 0.01) when test MEP amplitudes were matched and 0.28 ± 0.17 (FDI) and 0.85 ± 0.31 (TB, P < 0.05) when TS intensities expressed as percentage RMT were matched. Significant IHI ( P < 0.05) was identified with minimal CS intensities (expressed as percentage stimulator output) in the 30 s for FDI, 60 s for TB, and 40 s for BB. Additionally, a CS of roughly 120% RMT suppressed the test MEP but not a test H-reflex in BB, suggesting IHI observed in BB is likely mediated by a supraspinal mechanism. We conclude that IHI differs between different arm muscle representations, comparable between BB and FDI but lesser for TB. This finding suggests the amount of IHI between different arm representations does not strictly follow a proximal-to-distal gradient, but may be related to the role of each muscle in functional movement synergies.


2016 ◽  
Vol 36 (38) ◽  
pp. 9873-9887 ◽  
Author(s):  
D. Lindenbach ◽  
M. M. Conti ◽  
C. Y. Ostock ◽  
J. A. George ◽  
A. A. Goldenberg ◽  
...  

2008 ◽  
Vol 20 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Bernhard Pastötter ◽  
Simon Hanslmayr ◽  
Karl-Heinz Bäuml

In the orienting of attention paradigm, inhibition of return (IOR) refers to slowed responses to targets presented at the same location as a preceding stimulus. No consensus has yet been reached regarding the stages of information processing underlying the inhibition. We report the results of an electro-encephalogram experiment designed to examine the involvement of response inhibition in IOR. Using a cue-target design and a target-target design, we addressed the role of response inhibition in a location discrimination task. Event-related changes in beta power were measured because oscillatory beta activity has been shown to be related to motor activity. Bilaterally located sources in the primary motor cortex showed event-related beta desynchronization (ERD) both at cue and target presentation and a rebound to event-related beta synchronization (ERS) after movement execution. In both designs, IOR arose from an enhancement of beta synchrony. IOR was related to an increase of beta ERS in the target-target design and to a decrease of beta ERD in the cue-target design. These results suggest an important role of response inhibition in IOR.


2020 ◽  
Vol 131 (4) ◽  
pp. e207
Author(s):  
M. Topka ◽  
M. Scholten ◽  
C. Zrenner ◽  
P. Belardinelli ◽  
U. Ziemann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document