gaba signaling
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 31)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jea Kwon ◽  
Minwoo Wendy Jang ◽  
C. Justin Lee

AbstractLight is a powerful external cue modulating the biological rhythm of internal clock neurons in the suprachiasmatic nucleus (SCN). GABA signaling in SCN is critically involved in this process. Both phasic and tonic modes of GABA signaling exist in SCN. Of the two modes, the tonic mode of GABA signaling has been implicated in light-mediated synchrony of SCN neurons. However, modulatory effects of external light on tonic GABA signalling are yet to be explored. Here, we systematically characterized electrophysiological properties of the clock neurons and determined the spatio-temporal profiles of tonic GABA current. Based on the whole-cell patch-clamp recordings from 76 SCN neurons, the cells with large tonic GABA current (>15 pA) were more frequently found in dorsal SCN. Moreover, tonic GABA current in SCN was highly correlated with the frequency of spontaneous inhibitory postsynaptic current (sIPSC), raising a possibility that tonic GABA current is due to spill-over from synaptic release. Interestingly, tonic GABA current was inversely correlated with slice-to-patch time interval, suggesting a critical role of retinal light exposure in intact brain for an induction of tonic GABA current in SCN. To test this possibility, we obtained meticulously prepared retina-attached SCN slices and successfully recorded tonic and phasic GABA signaling in SCN neurons. For the first time, we observed an early-onset, long-lasting tonic GABA current, followed by a slow-onset, short-lasting increase in the phasic GABA frequency, upon direct light-illumination of the attached retina. This result provides the first evidence that external light cue can directly trigger both tonic and phasic GABA signaling in SCN cell. In conclusion, we propose tonic GABA as the key mediator of external light in SCN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jayarjun Ethiraj ◽  
Thulani Hansika Palpagama ◽  
Clinton Turner ◽  
Bert van der Werf ◽  
Henry John Waldvogel ◽  
...  

AbstractGamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nervous system. The GABA signaling system in the brain is comprised of GABA synthesizing enzymes, transporters, GABAA and GABAB receptors (GABAAR and GABABR). Alterations in the expression of these signaling components have been observed in several brain regions throughout aging and between sexes in various animal models. The hippocampus is the memory centre of the brain and is impaired in several age-related disorders. It is composed of two main regions: the Cornu Ammonis (CA1-4) and the Dentate Gyrus (DG), which are interconnected with the Entorhinal Cortex (ECx). The age- and sex-specific changes of GABA signaling components in these regions of the human brain have not been examined. This study is the first to determine the effect of age and sex on the expression of GABA signaling components-GABAAR α1,2,3,5, β1-3, γ2, GABABR R1 and R2 subunits and the GABA synthesizing enzymes GAD 65/67-in the ECx, and the CA1 and DG regions of the human hippocampus using Western blotting. No significant differences were found in GABAAR α1,2,3,5, β1-3, γ2, GABABR R1 and R2 subunit and GAD65/76 expression levels in the ECx, CA1 and DG regions between the younger and older age groups for both sexes. However, we observed a significant negative correlation between age and GABAAR α1subunit level in the CA1 region for females; significant negative correlation between age and GABAAR β1, β3 and γ2 subunit expression in the DG region for males. In females a significant positive correlation was found between age and GABAAR γ2 subunit expression in the ECx and GABABR R2 subunit expression in the CA1 region. The results indicate that age and sex do not affect the expression of GAD 65/67. In conclusion, our results show age- and sex-related GABAA/BR subunit alterations in the ECx and hippocampus that might significantly influence GABAergic neurotransmission and underlie disease susceptibility and progression.


Author(s):  
Amol K. Bhandage ◽  
Antonio Barragan

AbstractGamma-aminobutyric acid (GABA) is best known as an essential neurotransmitter in the evolved central nervous system (CNS) of vertebrates. However, GABA antedates the development of the CNS as a bioactive molecule in metabolism and stress-coupled responses of prokaryotes, invertebrates and plants. Here, we focus on the emerging findings of GABA signaling in the mammalian immune system. Recent reports show that mononuclear phagocytes and lymphocytes, for instance dendritic cells, microglia, T cells and NK cells, express a GABAergic signaling machinery. Mounting evidence shows that GABA receptor signaling impacts central immune functions, such as cell migration, cytokine secretion, immune cell activation and cytotoxic responses. Furthermore, the GABAergic signaling machinery of leukocytes is implicated in responses to microbial infection and is co-opted by protozoan parasites for colonization of the host. Peripheral GABA signaling is also implicated in inflammatory conditions and diseases, such as type 1 diabetes, rheumatoid arthritis and cancer cell metastasis. Adding to its role in neurotransmission, growing evidence shows that the non-proteinogenic amino acid GABA acts as an intercellular signaling molecule in the immune system and, as an interspecies signaling molecule in host–microbe interactions. Altogether, the data raise the assumption of conserved GABA signaling in a broad range of mammalian cells and diversification of function in the immune system.


Author(s):  
Felix Hadtstein ◽  
Misha Vrolijk

ABSTRACT Vitamin B-6 in the form of pyridoxine (PN) is commonly used by the general population. The use of PN-containing supplements has gained lots of attention over the past years as they have been related to the development of peripheral neuropathy. In light of this, the number of reported cases of adverse health effects due to the use of vitamin B-6 have increased. Despite a long history of study, the pathogenic mechanisms associated with PN toxicity remain elusive. Therefore, the present review is focused on investigating the mechanistic link between PN supplementation and sensory peripheral neuropathy. Excessive PN intake induces neuropathy through the preferential injury of sensory neurons. Recent reports on hereditary neuropathy due to pyridoxal kinase (PDXK) mutations may provide some insight into the mechanism, as genetic deficiencies in PDXK lead to the development of axonal sensory neuropathy. High circulating concentrations of PN may lead to a similar condition via the inhibition of PDXK. The mechanism behind PDXK-induced neuropathy is unknown; however, there is reason to believe that it may be related to γ-aminobutyric acid (GABA) neurotransmission. Compounds that inhibit PDXK lead to convulsions and reductions in GABA biosynthesis. The absence of central nervous system-related symptoms in PDXK deficiency could be due to differences in the regulation of PDXK, where PDXK activity is preserved in the brain but not in peripheral tissues. As PN is relatively impermeable to the blood–brain barrier, PDXK inhibition would similarly be confined to the peripheries and, as a result, GABA signaling may be perturbed within peripheral tissues, such as sensory neurons. Perturbed GABA signaling within sensory neurons may lead to excitotoxicity, neurodegeneration, and ultimately, the development of peripheral neuropathy. For several reasons, we conclude that PDXK inhibition and consequently disrupted GABA neurotransmission is the most plausible mechanism of toxicity.


2021 ◽  
Vol 39 (Supplement 1) ◽  
pp. e64
Author(s):  
Mazher Mohammed ◽  
Colin Sumners ◽  
Dominique Johnson ◽  
Karen Scott ◽  
Eric Krause ◽  
...  

2021 ◽  
Author(s):  
Keita Harada ◽  
Hidetada Matsuoka ◽  
Yumiko Toyohira ◽  
Yuchio Yanagawa ◽  
Masumi Inoue

2021 ◽  
Author(s):  
Amol K Bhandage ◽  
Laura M Friedrich ◽  
Sachie Kanatani ◽  
Simon Jakobsson-Bjoerken ◽  
J. Ignacio Escrig-Larena ◽  
...  

Protective cytotoxic and proinflammatory cytokine responses by natural killer (NK) cells impact the outcome of infections by Toxoplasma gondii, a common parasite in humans and other vertebrates. However, T. gondii can also sequester within NK cells and downmodulate their effector functions. Recently, the implication of gamma-aminobutyric acid (GABA) signaling in infection and inflammation-related responses of mononuclear phagocytes and T cells has become evident. Yet, the role of GABAergic signaling in NK cells has remained unknown. Here, we report that human and murine NK cells synthesize and secrete GABA in response to infection challenge. Parasitized NK cells secreted GABA while activation stimuli, such as IL-12/IL-18 or parasite lysates, failed to induce GABA secretion. GABA secretion by NK cells was associated to a transcriptional upregulation of GABA synthesis enzymes (GAD65/67) and was abrogated by GAD-inhibition. Further, NK cells expressed GABA-A receptor subunits and GABA signaling regulators, with transcriptional modulations taking place upon challenge with T. gondii. Exogenous GABA and GABA-containing supernatants from parasitized dendritic cells (DCs) impacted NK cell function by reducing the degranulation and cytotoxicity of NK cells. Conversely, GABA-containing supernatants from NK cells enhanced the migratory responses of parasitized DCs. This enhanced DC migration was abolished by GABA-A receptor antagonism or GAD-inhibition and was reconstituted by exogenous GABA. Jointly, the data show that NK cells are GABAergic cells and that GABA hampers NK cell cytotoxicity in vitro. We hypothesize that GABA secreted by parasitized immune cells modulates the immune responses to T. gondii infection.


2020 ◽  
Vol 21 (22) ◽  
pp. 8704
Author(s):  
Karan Govindpani ◽  
Clinton Turner ◽  
Henry J. Waldvogel ◽  
Richard L. M. Faull ◽  
Andrea Kwakowsky

γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter, playing a central role in the regulation of cortical excitability and the maintenance of the excitatory/inhibitory (E/I) balance. Several lines of evidence point to a remodeling of the cerebral GABAergic system in Alzheimer’s disease (AD), with past studies demonstrating alterations in GABA receptor and transporter expression, GABA synthesizing enzyme activity and focal GABA concentrations in post-mortem tissue. AD is a chronic neurodegenerative disorder with a poorly understood etiology and the temporal cortex is one of the earliest regions in the brain to be affected by AD neurodegeneration. Utilizing NanoString nCounter analysis, we demonstrate here the transcriptional downregulation of several GABA signaling components in the post-mortem human middle temporal gyrus (MTG) in AD, including the GABAA receptor α1, α2, α3, α5, β1, β2, β3, δ, γ2, γ3, and θ subunits and the GABAB receptor 2 (GABABR2) subunit. In addition to this, we note the transcriptional upregulation of the betaine-GABA transporter (BGT1) and GABA transporter 2 (GAT2), and the downregulation of the 67 kDa isoform of glutamate decarboxylase (GAD67), the primary GABA synthesizing enzyme. The functional consequences of these changes require further investigation, but such alterations may underlie disruptions to the E/I balance that are believed to contribute to cognitive decline in AD.


2020 ◽  
Author(s):  
Hideki Miwa ◽  
Ken Kobayashi ◽  
Shinobu Hirai ◽  
Mitsuhiko Yamada ◽  
Masahiko Watanabe ◽  
...  

Abstract Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system, synthesized by two isoforms of glutamate decarboxylase (GAD): GAD65 and GAD67. GABA may act as a trophic factor during brain development, but its contribution to the development and maturation of cerebellar neural circuits is not known. To understand the roles of GABA in cerebellar development and associated functions in motor coordination and balance, we examined GAD65 conventional knock out (KO) mice and mice in which GAD67 was eliminated in parvalbumin-expressing neurons ( PV-Cre ; GAD67 flox/flox mice). We found aberrant subcellular localization of the Shaker-type K channel Kv1.1 in basket cell collaterals of PV-Cre ; GAD67 flox/flox mice and abnormal projections from basket cells to Purkinje cells in both mouse strains. Furthermore, PV-Cre ; GAD67 flox/flox mice exhibited abnormal motor coordination in the rotarod test. These results indicate that GABA signaling in the cerebellum during development is critical for establishing appropriate connections between basket cells and Purkinje cells and is associated with motor coordination in mice.


Sign in / Sign up

Export Citation Format

Share Document